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Abstract
Hidden Markov Models (HMMs) have been studied and used
extensively in speech and birdsong recognition, but they are
not robust to limited training data and noise. This paper
presents two novel approaches to training continuous and dis-
crete HMMs with extremely limited data. First, the algorithm
learns the global Gaussian Mixture Models (GMMs) for all
training phrases available. GMM parameters are then used to
initialize state parameters of each individual model. For the
GMM-HMM framework, the number of states and the mixture
components for each state are determined by the acoustic vari-
ation of each phrase type. The (high-energy) time-frequency
prominent regions are used to compute the state emitting prob-
ability to increase noise-robustness. For the discrete HMM
framework, the probability distribution of each state is initial-
ized by the global GMMs in training. In testing, the probability
of each codebook is estimated using the prominent regions of
each state to increase noise-robustness. In Cassins Vireo phrase
classification using 75 phrase types, the new GMM-HMM ap-
proach achieves 79.5% and 87% classification accuracy using 1
and 2 phrases, respectively, while HTK’s GMM-HMM frame-
work makes guess predictions resulting in 1.33% accuracy. The
performance of the other algorithm is presented in the paper. 1

Index Terms: Hidden Markov Models (HMMs), limited data,
noise-robust, bird phrase classification

1. Introduction
Studies of birdsong syntax would benefit greatly from an abil-
ity to identify species and classify phrase types automatically
[1, 2, 3]. Bird phrase classification is challenging due to within-
class variability, limited training data, and noisy environments
[4, 5]. This problem shares many features with speech process-
ing, while presenting new challenges of its own [3].

Two spectrograms with same class labels may look differ-
ent due to time misalignment and frequency variation [4]. Bird-
songs become especially challenging when the song repertoire
is diverse: some species have thousands of distinct phrases in
their lexicons [6]. The frequency distribution of birdsong ele-
ments often resembles a Zipf distribution where some phrases
appear many times, while others appear sparingly [7]. Thus,
it is important to have an automatic classification system that
can be trained with only a few samples per phrase. Further-
more, the amount of available training data may be limited by
the logistics of the recording procedure. The lack of human an-
notation may also limit the amount of training labels even when
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more recordings are available. In real recording environments,
the data can be corrupted by background interference such as
rain, wind, other animals or even other birds vocalizing. Au-
tomatic birdsong systems may suffer from detecting non-target
segments. Most systems are sensitive to noise and demand ”a
low-clutter, low noise environment” [8]. A noise-robust classi-
fier needs to handle such adverse conditions that may be present
in the actual deployment data.

Techniques such as support vector machines (SVMs),
sparse representation, HMMs, and dynamic time-warping
(DTW) have been used for birdsong classification [9, 10, 11,
12, 13, 14, 15]. A time alignment component (e.g. DTW and
HMMs) is essential for birdsong classification. For example,
SVMs and spare representation classifiers benefit greatly from
integrating DTW into their frameworks [12]. For a recogni-
tion task where the signal is a continuous recording, DTW and
HMMs can detect or recognize patterns without requiring a seg-
mentation algorithm, which is prone to errors especially in a
noisy environment [5]. For these reasons, DTW and HMMs are
appealing frameworks. HMMs work well when there is suf-
ficient training data but their performance suffer greatly when
training data is limited due to the statistical nature of the al-
gorithm. DTW, on the other hand, is robust to limited training
data but its performance does not improve to the level of HMMs
when more data become available. Both DTW and HMMs are
susceptible to noise [14]. Some algorithms have been designed
to reduce noise in bird songs based on signal enhancement tech-
niques, such as spectral subtraction but the improvement is not
dramatic [16, 17, 18, 4]. Prominent regions — time-frequency
ranges expected to contain high energy for a particular phrase
— have been successfully integrated with DTW and shown to
be a noise robust component specially when non-target birds are
singing in the background [5, 4].

The HMM framework is appealing since it has been studied
extensively in speech recognition and other applications [19]. It
can be readily used for a transcription task where the data is not
pre-segmented and serveral well-developed HMM systems are
available such as HTK and Kaldi [20, 21]. However, the HMM
system degrades when training data is limited and the recording
is corrupted by background noise. In this paper, we propose a
methodology that compliments the existing HMM framework.
For each phrase class, the proposed algorithm uses a phrase
sample to obtain an initial model. This procedure is similar to
the segment-based speech recognition framework where similar
adjacent frames are grouped into a segment [22]. After that, the
proposed algorithm uses information learned from other phrase
types to derive model parameters. This procedure is inspired by
shared-distribution HMMs but implemented in a different way
[23, 24, 25]. The prominent region component is also integrated
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Figure 1: System overview: training and testing

into the system for noise robustness but in a statistical fashion.

2. Proposed Algorithm
Fig. 1 illustrates the proposed system. The training procedure
derives GMM parameters to estimate the state emitting prob-
abilities. Emitting probabilities can be determined by several
methods such as using a GMM or a codebook.

2.1. Feature Extraction

For each sound file or phrase segment, a spectrogram is ob-
tained in the same way as described in [4]. The DCT is then
applied and the first 13 dimensions are retained. The first and
second derivatives are also appended to the cepstral coefficients
resulting in 39-dimensional feature vectors.

2.2. Global GMM

A global GMM is used to learn the distribution of the feature
vectors of all phrases (Block A). First, a feature matrix is ex-
tracted from each file. Then each feature vector is treated as a
sample point for the GMM. The number of mixture components
is set to be 128, but it can be set to a higher number as well. For
mixture component k, let µG

k , σG
k , wG

k be its mean, covariance,
mixture weight of the global GMM, respectively.

2.3. State Sequence Initialization Algorithm (SIA)

To determine an initial state sequence from single training file
when there is no model available, we propose a State Sequence
Initialization Algorithm (SIA) as shown in Block B. SIA groups
similar adjacent frames into one state. As an initial step, SIA as-
signs State 1 to Frame 1 (now the current state is State 1). For
a latter frame i, the algorithm considers the cosine similarity
between Frame i and the first frame of the current state. Sup-
pose State St is the current state and the first frame of State St

is Frame q. If the cosine similarity between spectra yi and yq

is greater than a threshold (here, 0.7), Frame i stays in the cur-
rent state St. Otherwise, it starts a new state State St+1 (in this
case, Frame i is now the first frame of State St+1). This pro-
cedure carries on until the last frame is processed. Finally, the
algorithm gives the initial state sequence and the total number
of states. The number of states depends on the variation of the
acoustic profile of the particular phrase type and the pre-defined
similarity threshold.

2.4. Initial model parameters

The initial state sequence obtained from the SIA is used to de-
rive initial model parameters (Block C). The transition proba-
bility matrix can be computed readily from the initial state se-
quence. The emission probability density function (PDF), how-
ever, can be difficult for HMM training to estimate especially if
there is only 1 sample; there is no variance to fit a single Gaus-
sian. Our algorithm utilizes the feature variation learned from
the global GMM. Suppose SIA indicates that frame 1 to N are
in State St. The membership weight p(n)

k of a particular frame n
—the probability that frame n is generated by mixture compo-
nent k —can be obtained from the Global GMM. The mixture
weight of State St (wSt ) is estimated by averaging the member-
ship weights acrossN vectors (i.e.,wSt

k = 1
N

∑N
n=1 p

(n)
k ). The

PDF of State St can be then obtained by constructing a GMM
whose mixture means and covariances are identical to those of
the global GMM but the mixture weight vector changed to re-
flect the new distribution. In other words, the GMM parameters
for State St are {µG

k , σG
k , wSt

k }.

2.5. Parameter updates

One training sample is used to initialize model parameters. If
more samples are available, model parameter estimates can fur-
ther improve. If the training data size is sufficiently large, the
EM algorithm is commonly used to re-estimate the parameters.
Here, the Viterbi algorithm is used for simplicity. All training
files belonging to a particular phrase type is used in this pro-
cedure (Block D). For each file, a feature matrix is extracted
and aligned with the current model resulting in another state
sequence. The state sequences of all files combined are then
used to update the model for each state in the same fashion as
in Section 2.4. Transition probabilities can be computed read-
ily by considering the state sequences. After the final iteration,
the PDF of each state is determined. The mixture mean and co-
variance parameters are the same as the global GMMs; only the
mixture weight vector differs for each state.

2.6. Prominent Region Identification

Prominent regions are used to modify a given test spectrogram
to compute the emitting probability of a given state. Prominent
regions are used in testing (Block H) but first derived in train-
ing (Block G) as follows. First, the prominent regions for each
mixture component is determined. An inverse DCT is applied
to the first 13 coefficients (excluding the derivatives) resulting
is a vector in the spectral domain. The algorithm selects fre-
quency bins whose spectral amplitudes are higher than 20% of
the maximum amplitude and expands to both higher and lower
frequencies by 1 kHz on each side; the values for these bins are
set to 1. The prominent regions for each state St (rSt ) are ob-
tained by a weighted summation of the prominent regions for
those mixture components. The weighting function is simply
the state mixture weight vector (wSt ). The frequency bins that
have the combination values greater than 0.5 are declared as
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prominent, resulting in a prominent region vector of State St

(rSt ).
In testing, to compute the probability that Spectrum y is

generated by State St whose prominent region vector is rSt ,
y(b) is set to be zeros if rSt(b) = 0. The resulting spectrum is
then used for feature extraction in testing (Block H). The decod-
ing procedure is similar to traditional GMM-HMMs where the
emitting probability P (y|St) for each state St is first computed
and the Viterbi decoding algorithm is used for classification.
The difference of our framework in testing is that the promi-
nent region is applied to feature vectors for computing P (y|St)
during Viterbi coding. Note that the prominent regions are an
attribute of a state (just like its GMM parameters) that indicates
which frequency bins are expected to contain relevant informa-
tion. The process of deriving a prominent region vector is there-
fore performed only in training, and not during testing.

2.7. GMM-HMMs and Codebook-HMMs

Mixtures of Gaussians are used to estimate the PDF of each
state in the GMM-HMM framework (Block E). After the pa-
rameter update, the GMM for each state {µG

k , σG
k , wSt

k } has
128 mixture components with a different mixture weight vec-
tor. The coefficients of these vectors are sparse so we simply
drop any mixture component k whose weight is smaller than
0.0001 (wSt

k < 0.0001) for efficiency.
The codebook-HMM framework (Block F) differs from

GMM-HMM in the sense that the emitting probability is es-
timated using a finite set of points (codes). If we treat each
mixture mean vector of the global GMM (µG

k ) as a codeword,
we readily have ck = µG

k where ck is a code. The emission
PDF for each code can be estimated using the mixture weight
of State St (which has been derived from the parameter update
procedure (Section 2.4)) or P (ck|St) = wSt

k . We can assign
a code to a feature vector y by selecting the component k with
the highest membership weight p(y)k or by leaving p(y)k as the
soft score as a code probability (the probability of being each
code). For convenience, we refer to the first method as pCode1
and the probabilistic method as pCode2. In addition, we refer
to pGMM as the proposed GMM-HMM framework.

3. Experimental setup
3.1. Database

The training set is obtained from Cassin’s Verio songs recorded
in 2013, while the test data is recorded in 2014. The most
common 75 phrase types are selected. Sixteen samples are
randomly selected for each phrase type from the training set
(1200 samples in total) while the test data has 10 samples
per phrase types (750 total samples). Each experiment was
repeated three times and the results were averaged. The
recordings and annotations for this study are available at
http://taylor0.biology.ucla.edu/al/bioacoustics/.

3.2. Train and test conditions

This paper investigates two main factors that affect classifica-
tion accuracies: the amount of training data and the level of
background noise. Let N be the number of training samples.
Under each training condition, a different number of samples
was used to train each phrase class: N = 1, 2, 4, 8, and 16.
Each experiment set was tested under 4 SNR conditions namely
10dB, 5dB, 0dB, and the clean condition. The background
noise was recorded in the same environment when the target
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Figure 2: Classification accuracies under different N (the num-
ber of phrase per class used for training)
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Figure 3: Classification accuracies under different SNR test
conditions when N = 8. The horizontal line in each bar rep-
resents the accuracy when the prominent regions are not used

bird species was not singing [5, 4]. For a given test segment,
each algorithm classifies which one of the 75 phrase types the
segment belongs to. The average classification accuracy is ob-
served from the 750 test samples for each train-test condition.
Note that even though the proposed framework can also be used
for phrase recognition, we chose to evaluate it on a classifica-
tion task because the experiments can be better controlled (so
that each phrase has the same N for training and each segment
has the specified SNR as intended in testing, which can be dif-
ficult to achieve with continuous recordings.)

3.3. Baseline algorithm

The tHMM framework was executed using HTK-based backend
[20, 26]. We modeled 75 phrase types with 17 states per left-to-
right model, and each state is modeled using 1, 2 or 4 Gaussian
mixtures (whichever gives the highest accuracy for each N) and
diagonal covariance. MFCCs were used as front-end features
for HTK with standard parameters. We refer to this traditional
HMM framework as tHMM.

4. Results and discussion
4.1. Limited data

Fig. 2 shows the classification accuracies (Acc.) of each algo-
rithm when tested in clean conditions but trained with different
N . Across all experiments, the performance of each algorithm
generally improves as more training data are available but with
a different rate of improvement. In the clean train-test condition
when N = 1, the proposed algorithms yield reasonable perfor-
mance of 74.7% - 79.5% Acc. tHMM results in a pure guess
(1/75 = 1.33 % Acc.) due to the limitation of the statistical na-
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ture of the HMM algorithm. When N increases to 8 and above,
the performance of tHMM increases significantly, while that of
the proposed algorithms increases at a lower rate. Among all
proposed algorithms, pGMM yields best performance in most
cases. The performance of pCodebook2 (probabilistic code-
book) is slightly better than that of PCodebook1 (deterministic
codebook) for most cases.

4.2. Noise Robustness

Fig. 3 shows the accuracies of each algorithm when tested with
different SNR conditions. The training condition is N = 8 where
the performance of all algorithms are in the same range when
tested in the clean condition (92.0 - 94.5 % Acc.). However,
when there is noise present, tHMM underperforms the proposed
algorithms by a large margin. In the 10dB-SNR condition, for
example, the classification accuracy of all proposed algorithms
is in the range of 83 - 86% Acc. while tHMM yields 71.07%
Acc.

The horizontal line in each bar represents the accuracy
when the prominent regions are not used in the system. For
example, the first bar of the 10dB-SNR test condition has a hori-
zontal line at 74.6% Acc. This means pGMM yields 74.6% Acc.
when the system does not use the prominent regions to compute
the emitting probabilities, indicating about 10% improvement
when the prominent regions are utilized. The classification of
all proposed algorithm increases significantly in the 0dB testing
condition, a scenario where the the energy of background noise
is equal to the target bird signal. This extreme scenario vali-
dates that the prominent regions are an essential component for
a noise-robust system. In the clean-test condition, most algo-
rithms do not benefit from prominent regions possibly because
there is virtually no background noise under this condition.

4.3. Discussion

The proposed GMM-HMM and the traditional GMM-HMM
work best for different Ns. One possible reason that tHMM
outperforms the pGMM framework when there is sufficient
training data (here, N ≥ 8) is due to how Guassain mixtures
fit training samples. For the proposed framework, the mixture
parameters are also shared with other states to represent their
sample points. This may compromise the mixture parameters,
while tHMM can focus only on modeling a particular phrase
type. However the trade-off is unavoidable because when the
training data is not sufficient, we need to derive the model pa-
rameters by considering examples from similar phrase types.

The fact that pGMM performs well in limited training data
condition is encouraging; we can use pGMM to compliment
tHMM. The two training frameworks can be combined to cre-
ate a better system. For example, a system may employ tHMM
to train phrase classes that have at least N0 samples and use
pGMM to train the phrase classes with N < No. After train-
ing, all models will have the same format (i.e., each model has
mixture means, mixture covariances, and mixture weights). If
we do not employ pGMM, however, tHMM will simply provide
guess prediction for the phrase classes whose model parameters
can not be reliably estimated (e.g., 1.33% Acc. for N = 1 or 2
from our experiments). On the other hand, if pGMM is used to
obtain a GMM-HMM when N = 1 or 2, the accuracy for this
phrase type can go up to 80 - 90% Acc. Some novel compo-
nents presented in this paper may be used to improve tHMM.
For example, we can determine a suitable state number for each
phrase type by using the SIA, and let the HMM system (e.g.
HTK) work the rest as it normally does. The prominent regions

will add noise robustness to the HMM framework.
The acoustic nature of birdsongs poses some challenges for

bird phrase recognition, but also provides some advantages, al-
lowing us to include the above components to birdsong recog-
nition systems. For a certain species, phrase types can be nu-
merous (e.g., 3000 phrase types) each of which may require 20
states, leaving us with 60,000 states to learn, some which can
be quite similar. The advantage, however, is that most states
share similar characteristics, enabling us to learn the distribu-
tion from phrase neighbors even though there is only a single
example available for a given phrase type. In addition, bird-
songs cover a wide range of frequencies, but a small region of
frequency for a given phase and a given time instance, allowing
us to extract prominent regions in order to exclude background
noise. These characteristics may or may not directly apply to
human speech. For example, the frequency coverage at a par-
ticular time of speech tends to be wide, and mostly in the low
frequency range. The number of phonemes are relatively lim-
ited and most states do not share the same characteristics with
others. However, parameter sharing is also used in estimate tri-
phone models in speech but the conditions and implementations
are different from our algorithm.

5. Summary and Conclusion
A noise-robust HMM framework for limited training data is
proposed. This framework is subdivided into two algorithms
depending upon how the emitting probability is estimated:
GMMs and codebooks. Each phrase model generally has a dif-
ferent state number depending upon the dynamic acoustic vari-
ation of the phrase. These models are learned from not only
their own phrase type (which can be limited) but also from the
variation of other types. The prominent regions — an essen-
tial component for noise-robust classification of birdsongs —
are used to modify the spectrum when extracting a feature vec-
tor, in order to compute the emitting probabilities. When all
model parameters are obtained, the models can be used for both
classification and recognition. However, we studied the relevant
factors using a classification task. The proposed algorithm out-
performs HMMs in most conditions. Out of 20 train-test condi-
tions, the only scenario where tHMM outperforms the pGMM
is when the system is trained with 16 samples and tested in the
clean data set. When the number of training phrases is low,
the proposed algorithms outperform HMMs by a large margin.
When there are only 1 or 2 training phrases available per phrase
type, the proposed GMM-HMM framework yields 79.5% and
88% classification accuracy, respectively, while HMMs make
guess predictions (1.33% Acc). The experiments also validate
that prominent regions are an essential component for noise-
robustness, especially when the SNR is low.

We do not claim that the proposed system can replace the
well-established HMM framework. Rather, we proposed a new
algorithm, which can compliment the traditional HMMs. The
integrated system can train a model effectively with limited data
using the proposed GMM-HMMs. For phrase types that have
sufficient training data, traditional HMMs can still be used to
train their models. In future work, we plan to investigate if
other components in the proposed system (such as the promi-
nent regions or variable state numbers) benefits the traditional
HMM framework and to integrate the two frameworks. Finally,
we plan to apply the integrated system to fully automatic phrase
recognition where pre-segmentation is not required.
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