
Contextual prediction models for speech recognition

Yoni Halpern∗, Keith Hall, Vlad Schogol, Michael Riley,
Brian Roark, Gleb Skobeltsyn, Martin Bäuml
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Abstract
We introduce an approach to biasing language models towards
known contexts without requiring separate language models or
explicit contextually-dependent conditioning contexts. We do
so by presenting an alternative ASR objective, where we pre-
dict the acoustics and words given the contextual cue, such as
the geographic location of the speaker. A simple factoring of the
model results in an additional biasing term, which effectively
indicates how correlated a hypothesis is with the contextual cue
(e.g., given the hypothesized transcript, how likely is the user’s
known location). We demonstrate that this factorization allows
us to train relatively small contextual models which are effec-
tive in speech recognition. An experimental analysis shows a
perplexity reduction of up to 35% and a relative reduction in
word error rate of 1.6% on a targeted voice search dataset when
using the user’s coarse location as a contextual cue.
Index Terms: speech recognition, language modeling

1. Introduction
Language model adaptation is critical for large scale speech
recognition in a general setting. Adaptation is necessary when
the particular use of the recognizer does not match the set-
tings used to train the model. Language model adaptation
has typically focused on techniques directly related to estima-
tion: model interpolation, model mixtures, n–gram constraints
in feature-based models, and trigger models [1].

In this paper we present a different modeling objective that
leverages contextual cues that are available at the time of recog-
nition. These contexts can include features such as the geo-
location of the user, the time of day, or in cases where the partic-
ular user is known (e.g., for mobile voice search applications),
information about the user or about clusters of similar users.
Rather than modify the general language model or provide ad-
ditional language models, we introduce a model which makes a
prediction of the known contextual factor (e.g., the location of
the device the user is speaking into). We then use this prediction
to bias the recognizer towards contextually relevant hypotheses.

We present empirical results for our approach using a geo-
graphic contextual feature. Most importantly, our technique is
able to reduce the error rate significantly on a set of geo-specific
utterances without negatively impacting the error rate for gen-
eral utterances.

2. Related Work
While our approach may appear similar in structure to topic-
based language models [2], we do not modify the main lan-
guage model, rather we add an extra term to our objective (see
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section 3). Previous topic modeling approaches typically mod-
ify the language model itself, either via something similar to
traditional class-based language models [3] or via some kind of
mixture or MaxEnt model [4, 5]. In these methods, the topic
is predicted by the history and the current word is predicted by
the history and the topic, suitably marginalized if more than one
topic per history is allowed. In the current paper, we are inves-
tigating the use of features that are given, not predicted, so no
marginalization is required.

Recently, [6] presented an exploration of interpolated mod-
els using geographic signals similar to what we will use in this
paper. They present a technique for training and pruning a com-
bined general and geo-specific language model. Each of the
component geographical models are interpolated with the gen-
eral model. The choice of component geographic model is de-
termined by the location of the user’s device on which the voice
query is submitted. They show perplexity and word-error-rate
reductions on data containing the geographic information about
the user’s device. Furthermore, they show that this model can be
used for lattice rescoring as well as on-the-fly first-pass rescor-
ing. Our work on geographic modeling is similar in that we train
and evaluate our models on similar data. However, the advan-
tage of our model over the interpolated language model is that
we do not need to train per-geographic region language models,
thus allowing us to experiment with very compact feature-based
models.

3. Methodology
We introduce our approach as a modified form of the stan-
dard speech recognition noisy-channel formulation, whereby
the word sequence W is predicted given the acoustic signal A
and the known contextual feature C:

P (W |A,C) =
P (A|W,C)

P (A|C)

P (C|W )

P (C)
P (W ) (1)

≈ P (A|W )

P (A)
P (W )

P (C|W )

P (C)
(2)

The right-hand side of Equation 1 is an exact factorization
of the contextually dependent objective (the left-hand side). In
Equation 2, we make a simplifying independence assumption,
namely that the acoustic model is independent of the contextual
cue. While this may not be the case, in this paper we do not
attempt to model acoustic variation based on the contextual cue,
limiting our focus to language variation.

Given these assumptions, Equation 2 contains the standard
acoustic model and language model terms as well as an addi-
tional term P (C|W )

P (C)
which we refer to as the contextual bias

term. This term can be interpreted as a measure of how well the
words in the hypothesis are predictive of the known contextual
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feature. The ratio is 1.0 when the context is independent of the
hypothesis, and hence does not change the score. Positive and
negative correlation leads to a ratio greater than or less than 1.0,
respectively.

3.1. Context Prediction Model

The contextual bias term we introduced in Equation 2 is made
up of a prediction model P (C|W ) and a prior distribution over
contextual features, P (C). The prior is estimated using the rel-
ative frequency estimator over the training data. We train the
prediction model using a Maximum Entropy criterion [7], al-
lowing us to extract arbitrary features from a hypothesis W .
The billions of examples in our training set necessitate training
via efficient distributed training algorithms. We use the Iterative
Parameter Mixtures SGD approach as presented in [8] and [9].
We do not use additional regularization, but do exclude features
which occur fewer than 5 times in our training set.

For the experiments presented here, we use a simple set
of features based largely on n-grams. For each word in a hy-
pothesis, we collect the full n-gram and all lower order n-grams
ending with that word. We include an additional skip-gram,
which is a bigram covering the trigram context, but excluding
the middle word. For each training instance, we have a bag-
of-n-grams along with a bias feature (which models the class
prior). While the form of the model does not require that the
features be restricted to local n-grams, we found the bag-of-n-
grams to be effective. Finally, we train models using a feature
hashing approach [10]. We hash the feature identities and re-
strict the number of parameters using the modulo function, re-
sulting in a simple vector of parameters.

3.2. Incremental Rescoring

The above models are suitable for an N -best rescoring setting,
but are not straightforwardly applicable to incremental process-
ing. The general formulation of our model allows us to predict
the contextual feature just once per hypothesis. We make the
assumption that our bag-of-n-gram models are suitable for as-
signing scores to prefixes of hypotheses as well as the entire hy-
pothesis. Given such a model, for a string W = {w1 . . . wn},
we define the per-word factorization as:

P (C |W )

P (C)
=

P (C | w1)

P (C)

n∏
k=2

P (C | w1 . . . wk)

P (C | w1 . . . wk−1)
(3)

For each word, wk, the incremental contribution of the con-
textual bias term is the ratio the probability of the context given
the current prefix and the probability of the context given the
previous prefix. Note that each of the numerators will cancel out
the following denominator, leaving us with the original score.
This allows us to construct an incremental scoring scheme that
may be used during lattice rescoring. In the following empirical
evaluation, we report results for N -best rescoring and do not
evaluate lattice rescoring.

4. Empirical evaluation
All training and evaluation sets in this paper were English mo-
bile search data from the United States.

4.1. Training Data

We collected 40B aggregated and anonymized training in-
stances containing a typed user search query and a correspond-
ing coarse geographic location for the device used to issue the

query. We also held out 41M instances in order to measure
each model’s performance in terms of perplexity. Each geo-
graphic location was then mapped into coarse location clusters.
We show results for three different clustering schemes: DMA
[11] (210 clusters), ZIP2 (first two digits of the postal code, 100
clusters) and ZIP3 (first three digits of the postal code, 990 clus-
ters).

4.2. Evaluation Data

As described above, we measure perplexity on a held-out set of
instances from the same distribution as the training data. We
evaluate word-error-rate (WER) on two datasets. The first set
is a sample of general voice search utterances over a period of
two months; we refer to this dataset as VOICESEARCH (12886
utterances, 62792 words). Each utterance is transcribed by three
human raters; we keep those with agreement for the evaluation
set.

The second set of data was also sampled from voice search
utterances, but is focused on cases in which our current base-
line system fails to provide a useful transcription. We identify
failed utterances as those in which the user first speaks a search
query and, within a short time period, revises the transcribed
query by hand (using an on-screen keyboard or other typed in-
put method). We limit this dataset to those in which the ref-
erence transcript contains an entity which is located within a
fixed distance of the device location. This test, which we refer
to as the GEO-TARGETED set, consists of 5,270 anonymized
utterances (23,213 words). The baseline word error rates are
much higher for this set, as expected. Note that the baseline
sentence accuracy (SACC) is very low for this set by design.
Because this test set is biased, we report results on both the
VOICESEARCH dataset and the GEO-TARGETED dataset; the
intention is to show that our approach can improve on the ge-
ographically informative failed queries without negatively im-
pacting the general voice search utterances.

4.3. Metrics

We first show the impact of each model on test-set perplexity.
Since our model can be applied in addition to any language
model (n-gram-based, MaxEnt-based, mixutre models, etc.), we
report the percentage of perplexity reduction instead of explicit
perplexity values. Our model makes per-utterance predictions
and therefore, we show the per-sentence perplexity reduction
rather than a per-word quantity.

PPL = exp

(
1

N

N∑
i

− log

(
PLM (Wi)

P (C|Wi)

P (C)

))
(4)

= exp

(
1

N

N∑
i

− logPLM (Wi) +

1

N

N∑
i

− log
P (C|Wi)

P (C)

)

= PPLLM · exp

(
1

N

N∑
i

− log
P (C|Wi)

P (C)

)
(5)

Equation 4 is the per-sentence perplexity of the combined lan-
guage model and context prediction model. In Equation 5, we
factor this term to be the per-sentence perplexity of the baseline
LM, PPLLM , and the relative perplexity contribution from the
context prediction model (the second factor). We refer to this
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Figure 1: Perplexity reduction learning curves.

latter value as the PPL factor when reporting experimental re-
sults, i.e.,

PPL

PPLLM
= exp

(
1

N

N∑
i

− log
P (C|Wi)

P (C)

)

Additionally, we evaluate our models when used for N -best
rescoring (where N = 100) on top of our baseline system.
Our speech recognition system is based on a long short-term
memory neural network acoustic model [12, 13] with a vocab-
ulary of approximately 4 million words. The baseline language
model is a Katz [14] smoothed 5-gram model pruned to 100M
n-grams, trained using Bayesian interpolation to balance multi-
ple sources [15]. Our second-pass rescoring LM is a distributed
model trained on the same data fully concatenated using Katz
backoff and pruned to 15 billion n-grams [16].

During N -best rescoring, we compute the contextual bias
term for each hypothesis by predicting the known location clus-
ter of the device from which the utterance was captured. In
cases where we were unable to determine the location of the
device, we do not apply our model. In the evaluation below
we found that approximately 70% of the data contained usable
postal-code information, which was required for the geographic
clustering we performed.

We observed a small reduction in word-error-rate (less than
a 0.1 % absolute reduction) on the VOICESEARCH test set. In
order to get a more granular understanding of how our model
performs for geographic contexts, we provide experimental re-
sults on the GEO-TARGETED test set.

4.4. Learning Curve

To establish how much of our data is needed to get optimal per-
formance given a particular model size (hashed size), we eval-
uate the model over different sized training sets. We do this by
randomly sampling (without replacement) from the full training
set.

Table 1 shows that WER reductions and sentence accura-
cies (SACC – the number of sentences where the hypothesis
matched the reference exactly), improve with more data. In
Figure 1 we can see that perplexity improvements plateau as we
sample at a rate of more than 1/10 (using 1/10th the available
training data).

Model Sample PPL Factor WER SACC
Baseline - 1.000 25.0 12.56

DMA 0.005 0.732 24.8 13.20
DMA 0.01 0.702 24.7 13.41
DMA 0.02 0.675 24.7 13.58
DMA 0.04 0.652 24.6 13.79
DMA 0.01 0.645 24.6 13.82

Table 1: DMA models with hashed feature dimension of 500K.
N -best oracle WER for the GEO-TARGETED test set is 15.6.
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Figure 2: WER vs PPL factor. Lower is better on both axes.

4.5. Effect of Varying Feature Dimension

Model Dim (K) PPL Factor WER SACC
Baseline - 1.000 25.0 12.56

DMA 100 0.677 24.7 13.52
DMA 500 0.653 24.6 13.67
ZIP2 100 0.687 24.7 13.49
ZIP2 500 0.667 24.7 13.59

Table 2: DMA and ZIP2 models for two different hash sizes.
The dimension is the number of features per class (e.g., a ZIP2
model with hash dimension of 100K results in 10M parameters).
The sample rate is 0.04.

Our models are built using hashed features, allowing us the
ability to choose the exact size of the hashing dimension. Ide-
ally, we use the smallest model which achieves a usable WER
reduction. In Table 2 we see that a larger feature dimension
improves perplexity, but leads to only very modest WER im-
provements.

4.6. Word-Error-Rate Results

In empirical analysis of speech recognition systems, the rela-
tionship between perplexity improvements and WER reductions
is not always clear. In Figure 2, we plot the correlation between
perplexity and WER reduction for the context prediction mod-
els under a number of different conditions where we varied the
sampling rate, the size of the hashed feature dimensions, the or-
der of the n-gram features and the clustering of the postal codes.
In this case, it appears that perplexity reduction is a good indi-

2340



ZIP2 Clusters
Cluster % of Train Baseline Test
60??? (Chicago Metro) 3.75 25.7 24.9
92??? (San Diego Area) 3.43 23.8 23.8
10??? (Manhattan & North) 3.29 23.7 22.8
75??? (Dallas Area) 3.08 24.2 24.2
90??? (Los Angeles) 2.69 25.5 24.7

ZIP3 Clusters
Cluster % of Train Baseline Test
100?? (in Manhattan) 2.26 21.5 21.5
606?? (in Chicago) 1.89 26.6 24.7
752?? (in Dallas) 1.57 23.6 23.8
900?? (in Los Angeles) 1.50 21.5 21.5
770?? (in Houston) 1.46 26.4 24.7

DMA Clusters
Cluster % of Train Baseline Test
New York, NY 8.22 24.1 23.8
Los Angeles, CA 6.84 24.5 24.5
Chicago, IL 3.99 25.8 24.8
Dallas-Ft. Worth, TX 3.81 26.2 26.2
San Francisco, CA 3.06 23.1 23.2

Table 3: The top 5 clusters in each of the three clustering
schemes according to their frequency in the training data, the
baseline WER, and the WER for the best model trained for that
scheme.

cator of WER reduction. In Table 3 we show the WER changes
for the five most frequent geographic clusters for the three dif-
ferent clustering approaches.

4.7. Examples

Hypothesis Bias Final
1. Rhode Island
princeton city hall phone number 0.3 42.1
cranston city hall phone number -3.0 40.7
2. Illinois
metro train south shore to south bend indiana -2.0 91.3
metra train south shore to south bend indiana -3.2 90.5
3. Nebraska
i was states -0.0 51.4
iowa state’s -2.6 50.3
4. Nevada
jeff hardy songs 0.1 58.9
fat freddy songs -0.5 58.5

Table 4: Win examples: For each pair, the first example is pre-
ferred by the baseline system and the second example is pre-
ferred by the context prediction model (DMA Clusters with
500K feature dimensions and a sampling rate of 0.04.

To illustrate our model’s ability to address geographically-
related ASR errors, we isolated a few such examples from the
manually transcribed VOICESEARCH test set. Table 4 shows
four examples where the contextual bias term causes an incor-
rect 1-best transcript hypothesis to be replaced with a correct
one, according to the manual transcriptions and our own ver-
ification. The table also displays the contextual bias term for
each of the two hypotheses and the final cost of each hypothesis
(lower costs are better).

A brief description of the improvement for each of the ex-

amples in Table 4:

1. The user is located in Rhode Island and our model cor-
rectly reranks the second hypothesis which contains the
name of a city in Rhode Island.

2. The user is in the Chicago area and is asking for transit
directions. Our model prefers the correct name for the
transit authority there.

3. The user is in Nebraska and asks for a university in a
neighboring state.

4. A user in Nevada is searching for a musician, though it
is not clear why our model prefers the correct transcript
in this case.

Hypothesis Bias Final
1. Massachusetts
the first-ever shopkin made 0.2 84.7
the first ever shot in maine -1.1 84.4
2. Minnesota
chisholm ice racing kc pro 0.1 98.4
chisholm ice racing casey pro -0.5 98.3
3. Alabama
what is a power morcellator 0.0 113.5
what year is a power morcellator -0.1 113.4

Table 5: Loss examples: For each pair, the first example is pre-
ferred by the baseline system and the second example is pre-
ferred by the context prediction model (DMA Clusters with
500K feature dimensions and a sampling rate of 0.04.

Similar to the improvements, we show some of the recogni-
tion errors introduced by our model in Table 5. A brief descrip-
tion of each:

1. The model prefers a transcript containing the word
“maine” which is the name of a nearby state.

2. Our system prefers the name “casey” over the name
“KC” for an ice racing league. There happens to be a
place called Casey in Minnesota.

3. There is a slight preference for a transcript that contains
an extra word which was not actually spoken.

5. Conclusion
We present a new modeling approach to allow for adaptation
towards known contextual features during recognition. Our
modeling framework allows for any multi-class classifier which
produces probabilistic estimates for the classes. In our em-
pirical analysis we employ a MaxEnt classifier under various
training conditions allowing for compact models. We show
that this model reduces perplexity by 35% on a heldout dataset
and achieves a 1.6% relative reduction in WER on geographic
voice search data without hurting performance on general voice
search data.

In future work, we will explore both lattice rescoring and
on-the-fly first-pass rescoring using the incremental formulation
from Equation 3. We will also experiment with other contex-
tual cues, such as temporal clusters (time-of-day, day-of-week,
time-of-year).
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