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Abstract
Attention-based encoder-decoder neural network models have
recently shown promising results in machine translation and
speech recognition. In this work, we propose an attention-based
neural network model for joint intent detection and slot filling,
both of which are critical steps for many speech understanding
and dialog systems. Unlike in machine translation and speech
recognition, alignment is explicit in slot filling. We explore dif-
ferent strategies in incorporating this alignment information to
the encoder-decoder framework. Learning from the attention
mechanism in encoder-decoder model, we further propose in-
troducing attention to the alignment-based RNN models. Such
attentions provide additional information to the intent classifi-
cation and slot label prediction. Our independent task models
achieve state-of-the-art intent detection error rate and slot filling
F1 score on the benchmark ATIS task. Our joint training model
further obtains 0.56% absolute (23.8% relative) error reduction
on intent detection and 0.23% absolute gain on slot filling over
the independent task models.
Index Terms: Spoken Language Understanding, Slot Filling,
Intent Detection, Recurrent Neural Networks, Attention Model

1. Introduction
Spoken language understanding (SLU) system is a critical com-
ponent in spoken dialogue systems. SLU system typically in-
volves identifying speaker’s intent and extracting semantic con-
stituents from the natural language query, two tasks that are of-
ten referred to as intent detection and slot filling.

Intent detection and slot filling are usually processed sep-
arately. Intent detection can be treated as a semantic utterance
classification problem, and popular classifiers like support vec-
tor machines (SVMs) [1] and deep neural network methods [2]
can be applied. Slot filling can be treated as a sequence labeling
task. Popular approaches to solving sequence labeling prob-
lems include maximum entropy Markov models (MEMMs) [3],
conditional random fields (CRFs) [4], and recurrent neural net-
works (RNNs) [5, 6, 7]. Joint model for intent detection and
slot filling has also been proposed in literature [8, 9]. Such joint
model simplifies the SLU system, as only one model needs to
be trained and fine-tuned for the two tasks.

Recently, encoder-decoder neural network models have
been successfully applied in many sequence learning problems
such as machine translation [10] and speech recognition [11].
The main idea behind the encoder-decoder model is to encode
input sequence into a dense vector, and then use this vector to
generate corresponding output sequence. The attention mecha-
nism introduced in [12] enables the encoder-decoder architec-
ture to learn to align and decode simultaneously.

In this work, we investigate how an SLU model can bene-
fit from the strong modeling capacity of the sequence models.
Attention-based encoder-decoder model is capable of mapping
sequences that are of different lengths when no alignment infor-
mation is given. In slot filling, however, alignment is explicit,
and thus alignment-based RNN models typically work well. We
would like to investigate the combination of the attention-based
and alignment-based methods. Specifically, we want to explore
how the alignment information in slot filling can be best utilized
in the encoder-decoder models, and on the other hand, whether
the alignment-based RNN slot filling models can be further im-
proved with the attention mechanism that introduced from the
encoder-decoder architecture. Moreover, we want to investigate
how slot filling and intent detection can be jointly modeled un-
der such schemes.

The remainder of the paper is organized as follows. In sec-
tion 2, we introduce the background on using RNN for slot fill-
ing and using encoder-decoder models for sequence learning.
In section 3, we describe two approaches for jointly modeling
intent and slot filling. Section 4 discusses the experiment setup
and results on ATIS benchmarking task. Section 5 concludes
the work.

2. Background
2.1. RNN for Slot Filling

Slot filling can be treated as a sequence labeling problem, where
we have training examples of

{
(x(n),y(n)) : n = 1, ..., N

}
and we want to learn a function f : X → Y that maps an
input sequence x to the corresponding label sequence y. In slot
filling, the input sequence and label sequence are of the same
length, and thus there is explicit alignment.

Figure 1: ATIS corpus sample with intent and slot annotation.

RNNs have been widely used in many sequence modeling
problems [6, 13]. At each time step of slot filling, RNN reads a
word as input and predicts its corresponding slot label consid-
ering all available information from the input and the emitted
output sequences. The model is trained to find the best parame-
ter set θ that maximizes the likelihood:

argmax
θ

T∏
t=1

P (yt|yt−1
1 ,x; θ) (1)
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where x represents the input word sequence, yt−1
1 represents

the output label sequence prior to time step t. During infer-
ence, we want to find the best label sequence y given an input
sequence x such that:

ŷ = argmax
y

P (y|x) (2)

2.2. RNN Encoder-Decoder

The RNN encoder-decoder framework is firstly introduced in
[10] and [14]. The encoder and decoder are two separate RNNs.
The encoder reads a sequence of input (x1, ..., xT ) to a vector c.
This vector encodes information of the whole source sequence,
and is used in decoder to generate the target output sequence.
The decoder defines the probability of the output sequence as:

P (y) =

T∏
t=1

P (yt|yt−1
1 , c) (3)

where yt−1
1 represents the predicted output sequence prior to

time step t. Comparing to an RNN model for sequence label-
ing, the RNN encoder-decoder model is capable of mapping se-
quence to sequence with different lengths. There is no explicit
alignment between source and target sequences. The attention
mechanism later introduced in [12] enables the encoder-decoder
model to learn a soft alignment and to decode at the same time.

3. Proposed Methods
In this section, we first describe our approach on integrating
alignment information to the encoder-decoder architecture for
slot filling and intent detection. Following that, we describe
the proposed method on introducing attention mechanism from
the encoder-decoder architecture to the alignment-based RNN
models.

3.1. Encoder-Decoder Model with Aligned Inputs

The encoder-decoder model for joint intent detection and slot
filling is illustrated in Figure 2. On encoder side, we use a bidi-
rectional RNN. Bidirectional RNN has been successfully ap-
plied in speech recognition [15] and spoken language under-
standing [6]. We use LSTM [16] as the basic recurrent network
unit for its ability to better model long-term dependencies com-
paring to simple RNN.

In slot filling, we want to map a word sequence x =
(x1, ..., xT ) to its corresponding slot label sequence y =
(y1, ..., yT ). The bidirectional RNN encoder reads the source
word sequence forward and backward. The forward RNN reads
the word sequence in its original order and generates a hidden
state fhi at each time step. Similarly, the backward RNN reads
the word sequence in its reverse order and generate a sequence
of hidden states (bhT , ..., bh1). The final encoder hidden state
hi at each time step i is a concatenation of the forward state fhi
and backward state bhi, i.e. hi = [fhi, bhi].

The last state of the forward and backward encoder RNN
carries information of the entire source sequence. We use the
last state of the backward encoder RNN to compute the initial
decoder hidden state following the approach in [12]. The de-
coder is a unidirectional RNN. Again, we use an LSTM cell
as the basic RNN unit. At each decoding step i, the decoder
state si is calculated as a function of the previous decoder state
si−1, the previous emitted label yi−1, the aligned encoder hid-
den state hi, and the context vector ci:

si = f(si−1, yi−1, hi, ci) (4)
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Figure 2: Encoder-decoder model for joint intent detection and
slot filling. (a) with no aligned inputs. (b) with aligned inputs.
(c) with aligned inputs and attention. Encoder is a bidirectional
RNN. The last hidden state of the backward encoder RNN is
used to initialize the decoder RNN state.

where the context vector ci is computed as a weighted sum of
the encoder states h = (h1, ..., hT ) [12]:

ci =

T∑
j=1

αi,jhj (5)

and

αi,j =
exp(ei,j)∑T
k=1 exp(ei,k)

ei,k = g(si−1, hk)

(6)

g a feed-forward neural network. At each decoding step,
the explicit aligned input is the encoder state hi. The context
vector ci provides additional information to the decoder and can
be seen as a continuous bag of weighted features (h1, ..., hT ).

For joint modeling of intent detection and slot filling, we
add an additional decoder for intent detection (or intent clas-
sification) task that shares the same encoder with slot filling
decoder. During model training, costs from both decoders are
back-propagated to the encoder. The intent decoder generates
only one single output which is the intent class distribution of
the sentence, and thus alignment is not required. The intent de-
coder state is a function of the shared initial decoder state s0,
which encodes information of the entire source sequence, and
the context vector cintent, which indicates part of the source
sequence that the intent decoder pays attention to.

3.2. Attention-Based RNN Model

The attention-based RNN model for joint intent detection and
slot filling is illustrated in Figure 3. The idea of introducing at-
tention to the alignment-based RNN sequence labeling model
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Figure 3: Attention-based RNN model for joint intent detection
and slot filling. The bidirectional RNN reads the source se-
quence forward and backward. Slot label dependency is mod-
eled in the forward RNN. At each time step, the concatenated
forward and backward hidden states is used to predict the slot
label. If attention is enabled, the context vector ci provides in-
formation from parts of the input sequence that is used together
with the time aligned hidden state hi for slot label prediction.

is motivated by the use of attention mechanism in encoder-
decoder models. In bidirectional RNN for sequence labeling,
the hidden state at each time step carries information of the
whole sequence, but information may gradually lose along the
forward and backward propagation. Thus, when making slot la-
bel prediction, instead of only utilizing the aligned hidden state
hi at each step, we would like to see whether the use of context
vector ci gives us any additional supporting information, espe-
cially those require longer term dependencies that is not being
fully captured by the hidden state.

In the proposed model, a bidirectional RNN (BiRNN) reads
the source sequence in both forward and backward directions.
We use LSTM cell for the basic RNN unit. Slot label dependen-
cies are modeled in the forward RNN. Similar to the encoder
module in the above described encoder-decoder architecture,
the hidden state hi at each step is a concatenation of the for-
ward state fhi and backward state bhi, hi = [fhi, bhi]. Each
hidden state hi contains information of the whole input word
sequence, with strong focus on the parts surrounding the word
at step i. This hidden state hi is then combined with the context
vector ci to produce the label distribution, where the context
vector ci is calculated as a weighted average of the RNN hid-
den states h = (h1, ..., hT ).

For joint modeling of intent detection and slot filling, we
reuse the pre-computed hidden states h of the bidirectional
RNN to produce intent class distribution. If attention is not
used, we apply mean-pooling [17] over time on the hidden
states h followed by logistic regression to perform the in-
tent classification. If attention is enabled, we instead take the
weighted average of the hidden states h over time.

Comparing to the attention-based encoder-decoder model
that utilizes explicit aligned inputs, the attention-based RNN
model is more computational efficient. During model training,
the encoder-decoder slot filling model reads through the input
sequence twice, while the attention-based RNN model reads
through the input sequence only once.

4. Experiments
4.1. Data

ATIS (Airline Travel Information Systems) data set [18] is
widely used in SLU research. The data set contains audio
recordings of people making flight reservations. In this work,
we follow the ATIS corpus1 setup used in [6, 7, 9, 19]. The
training set contains 4978 utterances from the ATIS-2 and
ATIS-3 corpora, and the test set contains 893 utterances from
the ATIS-3 NOV93 and DEC94 data sets. There are in total 127
distinct slot labels and 18 different intent types. We evaluate
the system performance on slot filling using F1 score, and the
performance on intent detection using classification error rate.

We obtained another ATIS text corpus that was used in [9]
and [20] for SLU evaluation. This corpus contains 5138 utter-
ances with both intent and slot labels annotated. In total there
are 110 different slot labels and 21 intent types. We use the
same 10-fold cross validation setup as in [9] and [20].

4.2. Training Procedure

LSTM cell is used as the basic RNN unit in the experiments.
Our LSTM implementation follows the design in [21]. Given
the size the data set, we set the number of units in LSTM cell as
128. The default forget gate bias is set to 1 [22]. We use only
one layer of LSTM in the proposed models, and deeper models
by stacking the LSTM layers are to be explored in future work.

Word embeddings of size 128 are randomly initialized and
fine-tuned during mini-batch training with batch size of 16.
Dropout rate 0.5 is applied to the non-recurrent connections [21]
during model training for regularization. Maximum norm for
gradient clipping is set to 5. We use Adam optimization method
following the suggested parameter setup in [23].

4.3. Independent Training Model Results: Slot Filling

We first report the results on our independent task training mod-
els. Table 1 shows the slot filling F1 scores using our proposed
architectures. Table 2 compares our proposed model perfor-
mance on slot filling to previously reported results.

Table 1: Independent training model results on ATIS slot filling.

Model F1 Score Average
(a) Encoder-decoder NN 81.64 79.66 ±1.59
with no aligned inputs
(b) Encoder-decoder NN 95.72 95.38 ±0.18
with aligned inputs
(c) Encoder-decoder NN 95.78 95.47 ±0.22
with aligned inputs & attention
BiRNN no attention 95.71 95.37 ±0.19
BiRNN with attention 95.75 95.42 ±0.18

In Table 1, the first set of results are for variations of
encoder-decoder models described in section 3.1. Not to our
surprise, the pure attention-based slot filling model that does
not utilize explicit alignment information performs poorly. Let-
ting the model to learn the alignment from training data does
not seem to be appropriate for slot filling task. Line 2 and line
3 show the F1 scores of the non-attention and attention-based
encode-decoder models that utilize the aligned inputs. The

1We thank Gokhan Tur and Puyang Xu for sharing the ATIS data
set.
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attention-based model gives slightly better F1 score than the
non-attention-based one, on both the average and best scores.
By investigating the attention learned by the model, we find that
the attention weights are more likely to be evenly distributed
across words in the source sequence. There are a few cases
where we observe insightful attention (Figure 4) that the de-
coder pays to the input sequence, and that might partly explain
the observed performance gain when attention is enabled.

Figure 4: Illustration of the inferred attention when predicting
the slot label for the last word “noon” in the given sentence.
Darker shades indicate higher attention weights. When word
“noon” is fed to the model as the aligned input, the attention
mechanism tries to find other supporting information from the
input word sequence for the slot label prediction.

The second set of results in Table 1 are for bidirectional
RNN models described in section 3.2. Similar to the previous
set of results, we observe slightly improved F1 score on the
model that uses attentions. The contribution from the context
vector for slot filling is not very obvious. It seems that for se-
quence length at such level (average sentence length is 11 for
this ATIS corpus), the hidden state hi that produced by the bidi-
rectional RNN is capable of encoding most of the information
that is needed to make the slot label prediction.

Table 2 compares our slot filling models to previous ap-
proaches. Results from both of our model architectures advance
the best F1 scores reported previously.

Table 2: Comparison to previous approaches. Independent
training model results on ATIS slot filling.

Model F1 Score
CNN-CRF [9] 94.35
RNN with Label Sampling [7] 94.89
Hybrid RNN [6] 95.06
Deep LSTM [5] 95.08
RNN-EM [24] 95.25
Encoder-labeler Deep LSTM [25] 95.66
Attention Encoder-Decoder NN 95.78
(with aligned inputs)
Attention BiRNN 95.75

4.4. Independent Training Model Results: Intent Detection

Table 3 compares intent classification error rate between our
intent models and previous approaches. Intent error rate of
our proposed models outperform the state-of-the-art results by
a large margin. The attention-based encoder-decoder intent
model advances the bidirectional RNN model. This might be
attributed to the sequence level information passed from the en-
coder and additional layer of non-linearity in the decoder RNN.

4.5. Joint Model Results

Table 4 shows our joint training model performance on intent
detection and slot filling comparing to previous reported re-
sults. As shown in this table, the joint training model using

Table 3: Comparison to previous approaches. Independent
training model results on ATIS intent detection.

Model Error (%)
Recursive NN [8] 4.60
Boosting [19] 4.38
Boosting + Simplified sentences [26] 3.02
Attention Encoder-Decoder NN 2.02
Attention BiRNN 2.35

encoder-decoder architecture achieves 0.09% absolute gain on
slot filling and 0.45% absolute gain (22.2% relative improve-
ment) on intent detection over the independent training model.
For the attention-based bidirectional RNN architecture, the join
training model achieves 0.23% absolute gain on slot filling and
0.56% absolute gain (23.8% relative improvement) on intent
detection over the independent training models. The attention-
based RNN model seems to benefit more from the joint training.
Results from both of our joint training approaches outperform
the best reported joint modeling results.

Table 4: Comparison to previous approaches. Joint training
model results on ATIS slot filling and intent detection.

Model F1 Score Intent Error (%)
RecNN [8] 93.22 4.60
RecNN+Viterbi [8] 93.96 4.60
Attention Encoder-Decoder 95.87 1.57
NN (with aligned inputs)
Attention BiRNN 95.98 1.79

To further verify the performance of our joint training mod-
els, we apply the proposed models on the additional ATIS data
set and evaluate them with 10-fold cross validation same as
in [9] and [20]. Both the encoder-decoder and attention-based
RNN methods achieve promising results.

Table 5: Joint training model results on the additional ATIS
corpus using 10-fold cross validation.

Model F1 Score Intent Error (%)
TriCRF [20] 94.42 6.93
CNN TriCRF [9] 95.42 5.91
Attention Encoder-Decoder 95.62 5.86
NN (with aligned inputs)
Attention BiRNN 95.78 5.60

5. Conclusions
In this paper, we explored strategies in utilizing explicit align-
ment information in the attention-based encoder-decoder neural
network models. We further proposed an attention-based bidi-
rectional RNN model for joint intent detection and slot filling.
Using a joint model for the two SLU tasks simplifies the dialog
system, as only one model needs to be trained and deployed.
Our independent training models achieved state-of-the-art per-
formance for both intent detection and slot filling on the bench-
mark ATIS task. The proposed joint training models improved
the intent detection accuracy and slot filling F1 score further
over the independent training models.
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