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Abstract
In recent years, voice activity detection has been a highly

researched field, due to its importance as input stage in many
real-world applications. Automated detection of vocalisations
in the very first year of life is still a stepchild of this field.
On our quest defining acoustic parameters in pre-linguistic vo-
calisations as markers for neuro(mal)development, we are con-
fronted with the challenge of manually segmenting and annotat-
ing hours of variable quality home video material for sequences
of infant voice/vocalisations. While in total our corpus com-
prises video footage of typically developing infants and infants
with various neurodevelopmental disorders of more than a year
running time, only a small proportion has been processed so far.
This calls for automated assistance tools for detecting and/or
segmenting infant utterances from real-live video recordings.
In this paper, we investigated several approaches of infant voice
detection and segmentation, including a rule-based voice activ-
ity detector, hidden Markov models with Gaussian mixture ob-
servation models, support vector machines, and random forests.
Results indicate that the applied methods could be well applied
in a semi-automated retrieval of infant utterances from highly
non-standardised footage. At the same time, our results show
that, a fully automated approach for this problem is yet to come.
Index Terms: voice activity detection, infant vocalisation,
home video database, retrospective audio-video analysis

1. Introduction
Voice activity detection, i. e., the attempt to automatically ex-
tract segments of speech from background noise, is an important
requirement for the front-end of a number of real-world speech
processing systems, such as automatic speech recognition sys-
tems [1, 2]. At the expense of traditional rule-based voice ac-
tivity detection approaches (e. g., [3, 4, 5, 6, 7, 8]), machine-
learning-based approaches have become increasingly popular in
recent years (e. g., [9, 10, 11, 12, 13, 14, 15]). A main research
focus has been put on the improvement of voice activity de-
tection for speaker-independent applications under real-world
settings [16, 17].

However, due to limited fields of application a limited num-

ber of studies dealt with the automatic detection/segmentation
of infant voice (e. g., [18]).

For the last 20 years, our research has – inter alia – focussed
on speech-language phenomena. We have been studying typ-
ically developing (TD) infants, infants with brain injury, and
infants with neurodevelopmental disorders characterised by a
mean age of diagnosis in or beyond toddlerhood (conditions of
interest hereafter; COI: e. g., autism spectrum disorder, ASD;
Rett syndrome, RTT; or fragile X syndrome, FXS). Our over-
all aim is to define behavioural biomarkers – especially in the
motor and speech-language domain – to facilitate earlier iden-
tification. However, the diagnosis beyond toddlerhood in com-
bination with a low prevalence of most of our COI (rare ge-
netic disorders) hampers the implementation of comprehensive
prospective studies. Therefore, we have been collecting audio-
video data of the above mentioned conditions to build a decent
corpus with home video material. The retrospective analyses of
home video material of COI-infants in the prodromal period,
i. e. in the first year of life, were based on vocalisation se-
quences manually segmented from the videos clips. The efforts
of this approach call for a reliably performing infant voice ac-
tivity detector that would (i) facilitate the time-consuming seg-
mentation process and (ii) constitute the essential input stage
for an automated vocalisation-based tool for the early detection
of maldevelopment.

In the following, we introduce our research database and in-
vestigate different voice activity detection/vocalisation segmen-
tation approaches.

2. Methods

2.1. Database

In this study, infant voice activity detection experiments
were carried out far beyond studio conditions on a real-
world database actively used in medical/neuro-physiological re-
search – the Graz University Audiovisual Research Database
for the Interdisciplinary Analysis of Neuro(mal)development
(GUARDIAN).
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2.1.1. Material

GUARDIAN has been built up over 15 years and currently com-
prises home video material with a total running time of more
than a year. The corpus comprises videos of TD infants, in-
fants with brain injury, and infants later diagnosed with COI,
i. e., to a large extent rare genetic disorders and ASD. Videos
were recorded by the infants’ parents during typical family situ-
ations (playing, feeding, bathing, etc.) and during special fam-
ily events (birthday parties, Christmas eve, etc). At the time of
recording, the parents of infants later diagnosed with COI were
not aware of their child’s medical condition. Information on the
infants’ exact age in months was known or reconstructed for
each scene. The videos were provided by the families after hav-
ing received a COI-diagnosis for the purpose of retrospective
audio-video analysis to define early markers of various COI.

GUARDIAN’s audio-video material is characterised by in-
homogeneity in terms of signal quality/original audio-video for-
mat/codec, used recording device, infant’s nationality/family
language, recording setting (camera angle, number of persons
present in different scenes, etc.), recording location (indoor and
outdoor), or date of recording (referring to recording year).

Due to the great effort needed for data pre-processing in
context of video-based retrospective speech-language analy-
sis including scene selection and behaviour coding/annotation,
only a fraction of our whole database has been fully anno-
tated so far, thus, prepared for scientific analysis. For this
study, we used a representative subset of GUARDIAN com-
prising more than 20 hours of manually annotated audio se-
quences that were extracted from home videos diverging in a
number of meta-parameters: (a) the earliest videos were shot
in 1988, the latest ones in 2009; (b) the original record car-
riers varied from analogue (e. g., Super 8, Hi8, VHS, SVHS,
Video 8) to digital (e. g., DV tape, DVD) formats; (c) the ma-
terial contains TD infants, infants later diagnosed with ASD
or RTT, and one infant later diagnosed with FXS; and (d) the
videos were provided by families from four different nation-
alities (Austria, Germany, Italy, and United Kingdom) with
three different mother tongues/family languages (German, Ital-
ian, English). All recordings in the dataset originate from the
infants’ respective second half year of life, i. e., from months 7
to 12.

2.1.2. Annotation

Audio-video data were manually annotated for infant vocalisa-
tions in terms of setting start and stop markers using the video
coding system Noldus Observer XT. Vocalisations were defined
as utterances correlating to vocal breathing groups [19]. Vegeta-
tive sounds (e. g., breathing sounds, sneezes, hiccups, smacking
sounds) were not annotated. Furthermore, we did not annotate
vocalisations not produced by the participating infant with ab-
solute certainty (e. g., in situations with the participating infant
and other infants present in the scene) and vocalisations incom-
plete due to a jump cut in the video. The searching for relevant
vocalisations as well as raw segmentation was done by three
female and four male research assistants following detailed in-
structions and three training sessions by the first author. Prior to
inclusion in this study, the first author verified each pre-selected
vocalisation and performed the fine segmentation. The dataset
used for this study comprised a total of 4 903 annotated pre-
linguistic vocalisations with a mean length of 1.72s (± 1.41s
standard deviation). Each included video contained at least
one annotated vocalisation. Detailed information on the dataset
such as meta-parameter-specific numbers of annotated vocalisa-

Table 1: Number of infants (inf), length (l) of available audio-
video material in format hours(h):minutes(m):seconds(s), and
number of manually segmented vocalisations (voc) with re-
spect to COI, gender (GEN), and nationality/mother tongue
(NAT/L1). ASD = autism spectrum disorder; AT = Austria; eng
= English; f = female; FXS = fragile X syndrome; ger = Ger-
man; IT = Italy; ita = Italian; m = male; RTT = Rett syndrome;
TD = typical development; UK = United Kingdom.

COI GEN NAT/L1 #inf l [h:m:s] #voc

ASD m IT/ita 13 02:59:51 696
FXS m AT/ger 1 00:17:05 87
RTT f AT/ger 2 02:18:02 454
RTT f DE/ger 2 05:54:12 1745
RTT f UK/eng 5 02:08:30 386
TD f AT/ger 4 04:55:27 1044
TD m AT/ger 5 02:18:39 491

Σ 32 20:51:50 4903

tions is given in Table 1. For matters of speech-language anal-
ysis vocalisations were further annotated for vocalisation types
not considered in this study.

2.2. Voice activity detection

In this study, we investigated different voice activity detec-
tion/vocalisation segmentation approaches (2.2.1–2.2.4) in or-
der to identify and discuss their strengths and weaknesses with
respect to our specific data and application area. Voice activ-
ity detection/vocalisation segmentation was carried out on the
basis of the audio tracks extracted from the home videos in for-
mat 16 kHz/16 bit/1 channel/PCM. The manually annotated in-
fant vocalisations represented the reference segments. All de-
tection/segmentation approaches were implemented to operate
on frames of size 25 ms and a step size of 10 ms.

2.2.1. cVadV1

As an example for a standard rule-based voice activity detector
we selected the cVadV1 component of the open source feature
extraction toolkit openSMILE [20] in its current release [21]. In
this detector the decision for voice versus non-voice is simply
made on the basis of fuzzy scores related to deviations from the
mean long-term trajectories of energy, line spectral frequencies,
and Mel spectra [22].

2.2.2. HMMs

In our hidden Markov model (HMM) approach we used two
states indicating presence/absence of infant speech in the corre-
sponding frame. We used a uniform prior and a transition prob-
ability of 0.005 for both states, i. e., a-priori the model stays
with probability 0.995 in each of the two states, encouraging
a strong state blocking which we also observed in the train-
ing data (see Section 3). We trained Gaussian mixture mod-
els (GMMs) as observation models, using the expectation max-
imisation (EM) algorithm and cross-validating the number of
components. State prediction was performed using the Viterbi
algorithm. We first used 100 features, comprising pitch [23],
13 Mel-frequency cepstral coefficients (MFCCs), 13 perceptual
linear predictive coefficients (PLPs), 13 Rasta-PLPs and the 60
features used in the CLEAR 2006/2007 challenges [24]. We
normalised the data to zero-mean and unit variance. For train-
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ing, we used a stratified sub-set of the frames, using all positive
frames and the same number of negative frames. Since using
all features lead to poor results, we first applied a greedy feature
forward selection, i. e., we trained a classifier on each individual
feature and selected the one leading to the best acoustic event
detection accuracy (AED-ACC; see Section 3.1) on the valida-
tion set. We iterated this process, holding the selected features
fixed; in this way we selected eight features, since the valida-
tion performance degraded thereafter. Furthermore, using these
eight selected features, we applied discriminative GMMs as ob-
servation models by means of large-margin training [25]. To the
HMM using GMMs trained with EM we refer as HMMgen; to
the HMM with discriminative GMMs we refer as HMMdisc.

2.2.3. SVMs

For training support vector machines (SVMs) we used all 100
features described in Section 2.2.2 and reduced the training set
to 125 000 samples per class, as the training time of SVMs
increased drastically with the amount of data. We used a
Gaussian kernel and cross-validated the kernel width γ ∈
{2−10, . . . , 210} and the trade-off factorC ∈ {2−10, . . . , 210},
where AED-ACC was optimised on the validation set. Predic-
tion with SVM was done frame-wise, subsequently using a me-
dian filter of length 15 to smooth the system’s output.

2.2.4. Random forests

We trained Random Forests (RFs) [26] using super-vectors [27]
of the 100 features described in Section 2.2.2. We cross-
validated the number of trees T ∈ {50, 100, 200, 300}, the
maximal depth D ∈ {5, 10, 15, 20}, and the minimum num-
ber of samples per leaf M ∈ {1, 10, 100}, where AED-ACC
was optimised on the validation set. As for SVMs, the predic-
tion was done frame-wise, subsequently using a median filter of
length 15.

3. Experiments
Performance evaluation of all investigated voice activity de-
tection/vocalisation segmentation approaches was carried out
on the basis of a subset (test set) of our dataset. The
remaining subset (training set) was used for training (first
half of audio frames) and validating (second half of audio
frames) the presented machine-learning-based approaches, i. e.,
HMMs, SVMs, and RFs. Partitioning was done speaker/infant-
independently in a way that two third of infants per diagnosis,
gender, and family language were part of the training set and
one third part of the test set. For example, vocalisations of two
third of girls later diagnosed with RTT from English speaking
families were part of the training set, etc. For the final config-
uration we further considered the number of vocalisations per
infant to obtain a roughly two third to one third distribution
in absolute vocalisation number between training and test sets.
Vocalisations of the single individual later diagnosed with FXS
were assigned to the training set to avoid testing on an unknown
COI. The detailed partitioning into training and test set is given
in Table 2.

The bases for performance evaluation of each investigated
approach were the raw binary output vectors with ‘0’ indicat-
ing ‘no infant voice present’ and ‘1’ indicating ‘infant voice
present’ in a frame (of 25 ms). Before calculating any evalu-
ation measures, a moving median filter with a filter length of
15 frames was applied to the raw output vectors (for SVMs and
RFs already done as part of the classification model). The filter

Table 2: Dataset partitioning into training and test set with
specification of respective number of infants (inf) and number
of vocalisations (voc) in dependence of the infants’ COI, gen-
der (GEN), nationality (NAT), and mother tongue/family lan-
guage (L1). ASD = autism spectrum disorder; AT = Austria;
DE = Germany; eng = English; f = female; FXS = fragile X
syndrome; ger = German; IT = Italy; ita = Italian; m = male;
RTT = Rett syndrome; TD = typical development; UK = United
Kingdom.

Training Test
COI GEN NAT/L1 #inf #voc #inf #voc

ASD m IT/ita 9 424 5 272
FXS m AT/ger 1 87 - -
RTT f AT∪DE/ger 3 1836 1 363
RTT f UK/eng 3 262 2 124
TD f AT/ger 3 702 1 342
TD m AT/ger 3 339 2 152

Σ 22 3650 11 1253

length was chosen according to the shortest reference vocali-
sation occurring in the training set (150 ms). By filtering, (i)
detected voice periods shorter than 8 frames were eliminated,
and (ii) two detected voice segments interrupted by a non-voice
period shorter than 8 frames were concatenated to one single
segment.

3.1. Measures

We evaluated the selected approaches for two different scopes
of application. On the one hand, we were interested in a frame-
based voice detection/segmentation accuracy as the basis for a
fully automated vocalisation analysis system. In this case, we
compared the filtered binary output vector of the voice activ-
ity detector with the binary reference vector (ground truth an-
notation) frame-by-frame and assigned and counted true pos-
itives (TPs), false positives (FPs), and false negatives (FNs).
On the other hand, we evaluated the selected approaches for
vocalisation-based accuracy in sense of detecting the (rough)
location of an acoustic event/a vocalisation. According to [28],
a reference vocalisation was considered to be correctly detected
(TP), if the centre of a segment proposed by a detection ap-
proach was situated within the boundaries of the reference seg-
ment, or vice versa (i. e., the center of the reference segment
was situated within the boundaries of a segment proposed by
the detector). Figure 1 exemplifies the procedure of assigning
TPs, FPs, and FNs.

For both frame-based and vocalisation-based performance
evaluation we calculated precision and recall, as well as the
acoustic event detection accuracy (AED-ACC ≡ F-measure)
and the acoustic event error rate (AEER) according to [28] given
in Equations 1–4.

precision =
# TPs

# TPs+ # FPs
(1)

recall =
# TPs

# TPs+ # FNs
(2)

AED −ACC =
2 ∗ precision ∗ recall
precision+ recall

(3)

AEER =
# FNs+ # FPs

# TPs+ # FNs
(4)
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time
FN TP TP TP FP TP TP

Figure 1: Absolute value of waveform of a sample audio sequence (grey) with manually segmented reference vocalisations (black
frames) with segment centres (black vertical lines) and hypothetically detected/segmented vocalisations by a voice activity detec-
tion/segmentation approach (grey frames) with segment centres (grey vertical lines) and assignment to either true positive (TP), false
positive (FP), and false negative (FN) as the basis for vocalisation-based performance evaluation.

Table 3: Frame-based and vocalisation-based voice activity
detection/vocalisation segmentation performance of the inves-
tigated approaches. (Precision, recall, and AED-ACC are
rounded to three decimal points. AEER is rounded to integers.)

Measure cVadV1 HMMgen HMMdisc SVM RF
Frame-based evaluation

Precision 0.148 0.181 0.204 0.194 0.109
Recall 0.587 0.661 0.599 0.557 0.789

AED-ACC 0.236 0.284 0.305 0.288 0.192
AEER 90295 74172 87597 96846 45994

Vocalisation-based evaluation
Precision 0.105 0.172 0.255 0.111 0.070

Recall 0.886 0.886 0.740 0.876 0.956
AED-ACC 0.188 0.288 0.380 0.196 0.131

AEER 151 143 319 159 67

3.2. Results

Results for both the frame-based and the vocalisation-based
evaluation of our investigated approaches are given in Table 3.
For frame-based evaluation a good trade-off between AED-
ACC and AEER was achieved when using the HMMgen ap-
proach. Vocalisation-based evaluated, our HMMdisc approach
reached the highest AED-ACC, but also the highest AEER.
A good trade-off between AED-ACC and AEER was again
achieved using HMMgen.

4. Discussion
Our results varied in dependence of the used approach,
but the maximum AED-ACCs achieved for frame-based and
vocalisation-based evaluation were only 30.5% and 38.0%.

A factor dramatically degrading the performance of any
voice activity detection/vocalisation segmentation approach in
our study is the presence of numerous voice segments in the
videos not produced by the respective participating infants
(e. g., parental voice, voice from television or radio). Further-
more, in some scenes there are vocalisations produced by tod-
dlers or infants other than the respective participating infant
(e. g., vocalisations by elder brothers or sisters) or vocalisations
produced by the participating infant but incomplete due to a
jump cut causing FPs when being detected. For these and other
reasons, the method of retrospective audio-video analysis based
on home video recordings generally involves a number of limi-
tations and risks, but by providing a unique window to ‘look’ or
‘listen’ to the past, at the moment, it is one of the best available

means to study early phenomena in (rare) neurodevelopmental
disorders with a late mean age of diagnosis, such as RTT [29]
but also still ASD [30, 31, 32, 33].

Another issue concerning retrospective audio-video analy-
sis is the absence of particular behaviours such as the occur-
rence of specific vocalisation types produced by an infant in an
available dataset. Consequently, frequencies of behaviour oc-
currences should not be analysed on the basis of home video
material. This brings a benefit for our endeavour of auto-
matically detecting/segmenting infant vocalisations, because a
missed vocalisation (FN) does not cause major drawbacks for
further analysis, apart from a smaller dataset. Whereas, an in-
correctly detected/segmented vocalisation (FP) would increase
the expenditure of time for postprocessing or in case of fully au-
tomated vocalisation analysis/classification systems a FP would
cause a bias.

5. Conclusions and Outlook
The manual segmentation of pre-linguistic vocalisations in the
first year of life in variable quality home video material rep-
resents a challenging routine in our endeavour to retrospec-
tively analyse speech-language development in individuals with
neurodevelopmental disorders. Therefore, we introduced our
non-standardised dataset of more than 20 hours of home video
recordings including 4 903 annotated pre-linguistic infant vo-
calisations and investigated a number of voice activity detec-
tion/vocalisation segmentation approaches on the basis of our
data. Results give reason to focus on the implementation of a
semi-automated retrieval of vocalisations in near future. How-
ever, a fully automated approach is not feasible, yet.

Based on (semi-)automatically segmented infant vocalisa-
tions, in context of the analysis of speech-language develop-
ment the automatic classification of pre-linguistic vocalisation
types (e. g., [34, 35, 36]) should also be focused on in future.
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