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Abstract

Speech recognition in multi-channel environments requires tar-
get speaker localization, multi-channel signal enhancement and
robust speech recognition. We here propose a system that ad-
dresses these problems: Localization is performed with a re-
cently introduced probabilistic localization method that is based
on support-vector machine learning of GCC-PHAT weights and
that estimates a spatial source probability map. The main contri-
bution of the present work is the introduction of a probabilistic
approach to (re-)estimation of location-specific steering vectors
based on weighting of observed inter-channel phase differences
with the spatial source probability map derived in the localiza-
tion step. Subsequent speech recognition is carried out with
a DNN-HMM system using amplitude modulation filter bank
(AMFB) acoustic features which are robust to spectral distor-
tions introduced during spatial filtering.

The system has been evaluated on the CHIME-3 multi-
channel ASR dataset. Recognition was carried out with and
without probabilistic steering vector re-estimation and with
MVDR and delay-and-sum beamforming, respectively. Re-
sults indicate that the system attains on real-world evaluation
data a relative improvement of 31.98% over the baseline and
of 21.44% over a modified baseline. We note that this im-
provement is achieved without exploiting oracle knowledge
about speech/non-speech intervals for noise covariance estima-
tion (which is, however, assumed for baseline processing).
Index Terms: robust distant speech recognition, multi-channel
signal enhancement, CHiME-3 challenge

1. Introduction

Spatial signal enhancement forms an important component in
the construction of robust distant speech recognition systems
that employ multi-channel input from possibly noisy target
source signals. Source localization methods for multi-channel
data have been proposed in the literature in order to infer source-
specific spatial information [1]. These commonly rely on the
cross-correlation or empirical covariance matrix [2] of micro-
phone signals. Probabilistic approaches have been shown to en-
hance robustness against noise and reverberation as uncertainty
of the estimates is taken into account, e.g., by interpretation of
steered response power (SRP, [3]) functions as source proba-
bility [4], application of machine learning techniques [5] and
probabilistic incorporation of acoustic room characteristics [6].
Subsequent multi-channel spatial filtering based on estimated
source positions requires precise knowledge of inter-sensor
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transfer function differences, commonly in the form of a
steering-vector, in order to significantly improve target-to-
interference ratio. While a source localization model may al-
ready imply an approximation of this, acoustic variation en-
countered in realistic scenarios may render such knowledge use-
less for speech enhancement, unless it is possible to estimate the
acoustic parameters with sufficient accuracy for each speech ut-
terance. In real-world scenarios, such information has to be
estimated with the possible risk of decreased automatic speech
recognition (ASR) performance in case of erroneous estimates.
The 3rd CHiME speech recognition challenge [7] provides a
platform for the development and evaluation of ASR systems
on multi-channel acoustic signals. The CHiME-3 audio corpus
provides simulated data as well as real-world recordings allow-
ing for a comparison of ASR systems under both conditions.

The system that we propose here, see Fig. 1 for an overview,
consists of a signal enhancement front-end that uses spatial in-
formation about the target source which is obtained from inter-
channel phase differences weighted with spatial source prob-
ability. Spatial probability is estimated using a discriminative
classification approach to source localization [8], which has
been shown to be robust against noise and mismatch between
room conditions in test and training data [9]. This spatial in-
formation is used as steering vector in an adaptive delay-and-
sum (DS) beamformer or in combination with noise statistics
in a minimum-variance-distortionless-response (MVDR) beam-
former. The processed data are input to a state-of-the-art ASR
system that employs amplitude modulation filter bank (AMFB,
[10]) features used together with a hybrid deep neural net-
work (DNN), a hidden Markov model (HMM) ASR back-end
and subsequent language model (LM) rescoring based on a re-
current neural network (RNN). Results of AMFB features are
compared to Mel-frequency cepstral coefficients (MFCCs) with
frame splicing. The effects of the different signal enhancement
strategies are observed independent of the specific ASR system,
i.e, benefit from the proposed signal enhancement approach is
still observed in the best-performing ASR system. We com-
pared our approach to spatial filter estimation with the chal-
lenge’s baseline enhancement where spatial filters are estimated
under the assumption of free-field sound propagation. Further-
more, beamforming was conducted with and without use of es-
timated noise covariance. The results show that on real-world
data, the data-driven probabilistic estimates of spatial filters are
most successful for ASR. Another noticeable result is that us-
ing noise statistics is advantageous only on the simulated data,
where precise information is available. On real data, a detri-
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Figure 1: Processing diagram of the multi-channel ASR sys-
tem with probabilistic re-estimation of steering vectors d(é, w)
based on the spatial source probability map p(ex, t) at the max-
imum a posteriori source position &. Numbers in brackets indi-
cate sections with details of the respective processing steps.

ment is observed compared to the simpler signal enhancement
approach that uses only target-related spatial information, al-
though knowledge about supposed non-speech intervals is avail-
able.

2. Methods

Let the position of a target source be denoted by the generalized
location vector o in some arbitrary coordinate system. We here
assume that the corresponding physical parameters pertaining
to receiver channels m = 1... M are subsumed in frequency-
dependent phase variables ., (c, w) that form the steering vec-
tor

d(a,w) = [dq,... (1)

Under the free-field (FF) model, ¢ (o, w) depends linearly on
frequency w and time-delay 7., () between source and receiver
m,

dFF(a, UJ) _ [dl;F7 B dl:r]l: _ 67271'1'(07'7”(0()

FF 1T
LA , @
which is a good approximation to direct-path sound source
propagation from a source to a nearby microphone array, but
neglects effects of sound propagation in a real environment and

transfer characteristics of the microphones array hardware.

2.1. Probabilistic source localization

The first step for spatial signal enhancement is the estimation
of the target source’s position relative to the microphone array.
The method employed here is a discriminative classification ap-
proach to probabilistic sound source localization [8]. It delivers
the probability of the sound incidence for a defined set of source
locations using short-term generalized cross-correlation func-
tions [11] with phase transform (GCC-PHAT) as input features.
The classification part consists of a set of linear discriminative
support-vector machines (SVM)), trained to distinguish between
presence and absence of a sound source for a given position.
Each SVM is followed by a generalized linear model (GLM)
classifier, that converts SVM decision values into the estimated
spatial source probability map p(e, t), providing source pres-
ence probability for each position « at time ¢. In the training
procedure, a set of direction-dependent SVM-GLM models is
learned on a data set that includes all positions of interest.
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2.2. Probabilistic re-estimation of spatial source parame-
ters

While source localization implies knowledge of a spatial source
model, this model is in general not sufficiently precise for spa-
tial filtering due variability that is always present under realistic
conditions. We, thus, present a novel approach at estimating
spatial filters from the multi-channel input signals without ex-
plicitly using a model of sound propagation, but still exploiting
the source probability map obtained in Section 2.1. The esti-
mated probability map p(ex, t) is used as weighting of observed
phase differences between all M channels of the sensor setup
based on the Cross-power Spectrum Phase (CSP, [12, 13]),

_ m;(w7t) ) xm(w,t)
|25 (w, )| - [Zm (w, 8]

Dy (w, t) 3)
with z,, (w, t), zm (w, t) being the short-term Fourier transform
(STFT) of the nth, mth input channel, respectively, at time ¢
and frequency w.
The estimated spatial phase image ®,, ., between channels
n and m given source position « is obtained for each position
o as the spatial source probability-weighted CSP:
_ E[@un(w)la]
B [® ()]

E [@nm(w)|a] = Y pla,t) Pum(w,t),

Dy (w|ex) )

(&)

where n is an arbitrary but fixed reference channel. The result-
ing probabilistic re-estimation (PR) steering vector is obtained
as

d®(o,w) = [dF, .. &%), AR = B (w]e).

(6

2.3. Spatial signal enhancement

Spatial signal enhancement is conducted in the frequency do-
main by multiplying the multi-channel STFT @ (w, t) of the in-
put signal with a spatial filter vector w (e, w) yielding the out-
put y(w, 1)
y(w,t) = w (a,w)a(w, t). @)

Two alternative approaches to spatial filtering are employed
here: Delay-and-sum (DS) beamforming uses a filter-vector that
is identical to the steering vector,
( ®)
Minimum-variance-distortionless-response ~ (MVDR, [14])
beamforming incorporates the noise covariance matrix R(w)
into computation of the filter vector according to

_ [R(w) +rTn]"" d(er,w)
d?(a,w) [R(w) + rIy] " d(a,w)
with a regularization constant 7 and Iy, the identity matrix of
size M.
In this study, spatial filters were steered towards the most

probable source position & obtained by maximum a posteriori
estimation

& = argmaxF [p(a)] = argmax Zp(a, t) - pe(a), (10)
o (o2 t

w(o,w) = d(o,w).

wMVDR (

9

a,w)

where p.(a) is a position-dependent prior that, e.g., assigns
higher probability to source positions that are close to the center
of the microphone array.

Considering both beamforming approaches and both meth-
ods to estimate d(c,w), four enhancement systems are ob-
tained as summarized in Tab. 1.



Table 1: Summary of signal enhancement systems.

| Name [ Beamformer [ Steering vector ‘
FF-DS DS (Eq. 8) free-field (Eq. 2)
PR-DS DS (Eq. 8) prob. re-est. (Eq. 6)
FF-MVDR | MVDR (Eq. 9) free-field (Eq. 2)
PR-MVDR | MVDR (Eq.9) | prob. re-est. (Eq. 6)

3. Experiments and results

3.1. ASR framework

Most parts of the ASR back-end employed were used for a con-
tribution to the CHiME3 challenge [15]. The ASR back-end
consists of a 7-layer hybrid DNN with 2047 sigmoid activation
units per hidden-layer. The DNN is pre-trained using stacked
restricted Boltzmann machines [16] prior to mini-batch stochas-
tic gradient descent training [17]. The DNN is further discrim-
inatively trained based on the state-level minimum Bayes risk
criterion [17]. The AMFB feature extraction analyses temporal
dynamics of speech by decomposing critical spectral energies
into band-limited amplitude modulation frequency components
[10, 18]. MFCC as well as AMFB features are speaker adapted
using feature-space maximum likelihood linear regression (fM-
LLR). As a language model the standard WSJO tri-gram with
entropy pruning is applied [7] prior to rescoring results using a
RNN-based LM [19].

3.2. Baseline signal enhancement system

The baseline enhancement system is provided with the CHIME-
3 software package. It consists of an MVDR beamformer that
operates on the 6-channel microphone signal captured with the
recording hardware used for generating the CHiME3 data set.
The target source position is estimated from a non-linear SRP-
PHAT pseudo spectrum [20] whose peaks are tracked by the
Viterbi algorithm. For the tracking, the SRP-PHAT spectrum is
weigthed with the same p. () as used in (10) and the transition
probabilities between speaker positions are inversely related to
the distance between the positions. In the originally provided
version, referred to as base, the noise covariance matrix for the
beamformer is estimated in a time window of 400 ms to 800 ms
preceding the utterance. Here, additionally a modified version,
base mod., is used in which the estimation is conduced on the
time interval of the same length, but after the utterance.

3.3. Speech data

The CHiME-3 data sets contain six-channel speech recordings
from different noisy environments, namely public bus transport
(BUS), a cafe (CAF), a street junction (STR), and a pedes-
trian area (PED). Sentences from the Wall Street Journal cor-
pus (WSJO, [21]) were read by 8 different speakers. In addition,
recordings were simulated for each noise scenario by mixing
clean WSJO recordings with the noise backgrounds using esti-
mated impulse responses of the recording setup. Both of these
sets real recordings (real) and simulated recordings (simu) were
divided into a development data set (DEV) and an evaluation
set (EVAL) each containing 410 utterances of real recordings
and 310 simulated for each noise scenario. The training data
set contains 7138 simulated utterances from WSJO and 1600
real recordings referred to as the multi-noisy training set. Note
that the ASR system used here is trained without any signal en-
hancement applied to the data, such that the identical acous-
tic models are used in each experiment. Training was con-
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Table 2: Word error rates obtained with the AMFB-RNNLM
ASR system in combination with different signal enhancement
(SE) systems on the evaluation data set. Average WERs (Avg.)
are shown for the simulated data, detailed results for the dif-
ferent noise scenarios, average and mean relative improvement
(Rel.) are shown for the real-world recordings.

simu real
| SE Avg. BUS[ STR[ CAF[PED[ Avg.[ Rel.
base 4.67(/17.7216.51 | 11.45]| 9.97|13.91 —
base mod. | 4.6815.50(13.52| 9.88|8.93|11.96|13.70
FF-MVDR| 5.52(/15.14|14.06|10.03| 9.28 | 12.13 | 12.18
PR-MVDR| 5.33(/12.53|10.48| 8.22|7.94| 9.7928.60
FF-DS |10.65(12.66|10.14 | 10.18 | 8.09|10.27 | 24.27
PR-DS |10.63({10.99| 844 | 9.40|7.66| 9.12|31.98

ducted using the Kaldi toolkit [22] provided in the context of
the CHiME-3 challenge. All results presented are obtained fol-
lowing rules defined by the CHiME-3 challenge and only the
official training and test data sets were used.

3.4. Training of the localization system

As the probabilistic localization approach requires to learn
models for estimation of the spatial source probability map
p(a, t) a training data set was compiled from the CHiME-3
data. The clean recorded WSJO utterances were mixed with 6-
channel noise recordings from all scenarios. The positions of
the sources relative to the sensor array were simulated based
on the known dimensions of the microphone array. Free-field
sound propagation was assumed (which, at least, does not agree
with the characteristics of the second array channel which is in-
stalled on the back of the tablet used for the recordings). Sound
sources were simulated to occur in four grids of 90cm x 90 cm
with 5 cm resolution in distances of 15cm, 25cm, 35cm and
45cm to the sensor array plane corresponding to the search
space of the baseline localization method. In total 4 sets of
192 = 361 models each were learned - one for each grid sepa-
rately. For the estimation of &, a probability map was estimated
for each grid independently and the grid with the highest time-
integrated probability was chosen afterwards.

3.5. Results

A summary of recognition results is shown in Figure 2. Word
error rates (WER) for the simulated and the real data from
the development and the evaluation data sets are shown aver-
aged over all noise scenarios. Results are displayed for the
MFCC-based ASR system (1st group of six bars in each panel),
the AMFB features (2nd group) and the AMBF system with
RNNLM rescoring (3rd group).

3.5.1. ASR systems

Regarding the performance of the different ASR systems,
AMBEF features outperform the MFCC system.

The relative WER improvement, averaged across all noise
scenarios and signal enhancement approaches, of AMFB fea-
tures compared to the MFCC setup amounts to 6.37% (simu)
and 8.95% (real), respectively, on the development test data and
to 14.53% (simu) and 12.80% (real) using the evaluation test
data, respectively. The improved ASR performance of AMFB
features compared to the MFCC plus frame splicing approach
is the result of a better generalization effect by using the AMFB
[18]. A further improvement is achieved by the RNNLM rescor-
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Figure 2: Word error rates (WER) achieved on the simulated (panels “DEV simu” and “EVAL simu”) and real (panels “DEV real”
and “EVAL real”) CHIiME-3 development (“DEV”) and evaluation (“EVAL”) data sets. Results are shown for three DNN-based ASR
systems (“MFCC”, “AMFB”, “AMFB+RNNLM” groups of six results in each panel) and the six different signal enhacement methods

(see legend, Table 1 and text for explanation).

ing, which consistently yields an average relative improvement
on all data sets of 27.05% and 23.90% on DEV simu and real,
25.42% and 21.13% on EVAL.

3.5.2. Signal enhancement approaches

The average WERSs achieved with the different signal enhance-
ment (SE) methods shown in Figure 2 can be grouped into
groups of two by the underlying localization and beamform-
ing methods. The first two bars in each group of six are the
baseline SE system (base) and the modified baseline with noise
covariance estimation after the utterance (base mod.). For the
simulated data results of both variants of the baseline are al-
most equal, average relative differences are less than 1.2% for
all ASR systems and 0.87% on average over all ASR sys-
tems. On the real data sets, significant differences occur: Es-
timation of noise covariance after the utterance achieves a rel-
ative improvement of MFCC: 24.08%, AMFB: 25.98% and
AMFB+RNNLM: 32.04% on the DEV data and 8.33%, 10.13%
and 13.70%, respectively on the EVAL set.

Similar observations are made regarding the method for esti-
mating the steering vectors in both the other groups of two,
MVDR and DS. Relative differences between FF-MVDR and
PR-MVDR are small for simulated data, average values over
ASR systems are DEV: 3.96% and EVAL: 1.23%, while larger
differences are found for the real DEV set 5.90% and the largest
for real EVAL: 17.45%. In the DS group the average relative
differences for simu are DEV: 0.49% and EVAL: 0.58% and for
real DEV: 9.61% and EVAL: 8.30%.

In summary, on both simulated data sets the baseline meth-
ods yields the best ASR performance. This is potentially due
to the (slight) adaptation of the steering filters according to the
source tracking included in the baseline SE system during a sin-
gle utterance, while in the proposed SE filters are kept fixed at
the most probable source position for the duration of the utter-
ance. The DS approaches, that do not exploit noise statistics, are
far behind MVDR-based systems. For the real-world record-
ings the picture is clearly different. The time interval in which
the noise covariance is estimated has a noticeable effect on the
ASR performance. This is supposedly due to unlabeled sam-
ples of the target speakers voice that accidentally occur before
the actual utterance starts, e.g., by aborted erroneous record-
ings. These are more likely to precede an utterance than occur
afterwards. The modified baseline approach, FF-MVDR and
FF-DS are on a similar performance level on the DEV real data

and a slight advantage is taken from the PR-based spatial fil-
ters. On the EVAL real data set using spatial filters obtained
with the proposed probabilistic phase re-estimation yields an
noticeable enhancement of ASR performance in combination
with noise information (PR-MVDR vs. FF-MVDR) of 18.80%
for the best-performing ASR system AMFB+RNNLF. Without
noise information (PR-DS vs. FF-DS) the relative improvement
amounts to 10.73%. Thereby PR-DS achieves the best overall
performance on the real-world evaluation data. Detailed abso-
lute results in WERs for this data set are shown in Tab. 2 as well
as average WERs for the simulated evaluation data.

With the CAF noise scenario as the only exception, the PR-DS
approach, using only target-related spatial information for sig-
nal enhancement, achieves the best results. In the CAF scenario,
PR-MVDR clearly outperforms the FF-based approaches.

4. Conclusions

(1) Probabilistic estimation of source-related spatial filter char-
acteristics without the assumption of free-field sound propaga-
tion consistently yields higher ASR performance on real data
recordings.

(2) On the other hand, experiments with simulated data show
that reliable (“oracle”) information about noise statistics may
yield significant benefits over using target information only.
Hence, robust estimation of noise statistics remains important
as its lack may severely degrade ASR performance and may
explain why the signal enhancement method proposed here is
most successful on real data.

(3) AMFB acoustic features prove to be robust under the spa-
tial filtering approaches investigated here and provide improved
generalization capabilities from development to evaluation test
data set. Incorporation of prior information about human speech
processing through modulation frequency decomposition [18] is
hypothesized to be one factor contributing to the improvement
over entirely data-driven temporal processing approaches.
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