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Abstract 
We present a procedure for generating gestural scores from 
speech acoustics. The procedure is based on our recent SABR 
(sparse, anchor-based representation) algorithm, which models 
the speech signal as a linear combination of acoustic anchors. 
We present modifications to SABR that encourage temporal 
smoothness by restricting the number of anchors that can be 
active over an analysis window. We propose that peaks in the 
SABR weights can be interpreted as “keyframes” that 
determine when vocal tract articulations occur. We validate 
the approach in two ways. First, we compare SABR keyframes 
to maxima in the velocity of electromagnetic articulography 
(EMA) pellets from an articulatory corpus. Second, we use 
keyframes and SABR weights to build a gestural score for the 
VocalTractLab (VTL) model, and compare synthetic EMA 
trajectories generated by VTL against those in the articulatory 
corpus. We find that SABR keyframes occur within 15-20 ms 
(on average) of EMA maxima, suggesting that SABR 
keyframes can be used to identify articulatory phenomena. 
However, comparison of synthetic and real EMA pellets show 
moderate correlation on tongue pellets but weak correlation on 
lip pellets, a result that may be due to differences between the 
VTL speaker model and the source speaker in our corpus. 
Index Terms: gestural scores, articulatory inversion, vocal 
tract model, sparse coding 

1. Introduction 
Physical models use detailed two or three dimensional meshes 
to simulate the configuration of the vocal tract and its 
articulatory parameters. These models can generate synthetic 
acoustics for a specific articulatory configuration by 
measuring the cross-sectional area of the model and then 
computing the resulting filter resonances. To produce 
continuous speech, these models require a motor control 
program that emulates motions and phenomena seen in the 
vocal tract, such as coarticulation. An example of such model 
is  VocalTractLab (VTL) [1, 2]. VTL presents the vocal tract 
as a set of seven distinct 3-dimensional meshes and uses a 
control program inspired by the Task Dynamics framework [3] 
to model vocal tract dynamics. Task Dynamics models vocal 
tract motions as a collection of “gestures,” or a period when an 
articulator is moving towards an articulatory target. Generally, 
a gestural control program (known as a “gestural score”) is 
built by a human expert and requires a priori knowledge on 
the desired phonemic content. As noted by Nam et al. [4], 
however, estimating gesture timings from speech acoustics is 
difficult.  

This paper examines the possibility of deriving gestural 
scores directly from acoustics using a recently proposed 

sparse, anchor-based representation (SABR) of speech [5].  
SABR decomposes speech as a weighted sum of speaker-
specific acoustic anchors. By choosing phoneme centroids as 
anchors, and by ensuring that the decomposition is sparse, the 
weight matrix describes what phonemes are uttered, and when. 
If SABR anchors can be mapped into articulatory 
configurations, can the SABR weighs be used to estimate 
gestural scores? 

To answer this  question, we present an iterative method to 
promote temporal smoothness on the SABR weights by 
imposing constraints on how many anchors can be active over 
an analysis window. We then extract features from the SABR 
weight matrix that indicate when articulatory motions begin—
a concept we call “keyframes”. From the SABR weights and 
corresponding keyframes, we generate gestural scores for 
VTL.  We show that SABR weights can predict the onset and 
offset timings of gestures by comparing extracted keyframes 
with EMA data from an articulatory corpus. Finally, we use 
keyframes and SABR weights to generate gestural scores for 
VTL, and compare synthetic EMA trajectories generated by 
VTL against EMA trajectories from the source speaker.  

The rest of the paper is organized as follows. Section 2 
reviews previous work on gestural scores generation and 
sparse representations of speech; it also provides a brief 
overview of the VocalTractLab physical model. Section 3 
describes the original SABR model and proposes three 
modifications that allow it to generate gestural scores: 
windowed generation of SABR weights, grouping weights by 
manner of articulation, and using multiple anchors to represent 
phonemes. This section also describes how we extract 
keyframes from SABR weights and generate gestural scores 
for VTL. Finally, we review the performance of the keyframe 
selection algorithm as well as the gestural score generation, 
and discuss results and future work. 

2. Background 
The Task Dynamics model of Saltzman and Munhall [3] 
describes vocal tract motion as a constellation of “gestures”, or 
periods of time articulators of the vocal tract are moving 
towards a place and degree of constriction. Coordinating these 
gestures allows a speaker to reach configurations necessary to 
produce phonemes. The  Task Dynamics model explains many 
observed phenomena of vocal tract motion, such as 
coarticulation and speaking rate variations [6]. Under the Task 
Dynamics model, gestures can also provide a means to 
perform a form of articulatory inversion; it has been shown 
that gestures can be applied to various speech applications, 
from speech recognition [7] to speech synthesis [8]. 

A few methods have been proposed to automatically 
transcribe gestural scores from a source utterance. Nam et al. 
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[4] used a phomeic transcription from a source utterance to 
drive the TADA vocal tract model (based on Task Dynamics, 
[9]). The authors then used an iterative time warping to align 
the onset and offset times of the gestural score by comparing 
using a warping function between the synthetic TADA 
acoustics and source utterance. They found that their proposed 
iterative procedure produced lower log-spectral distances than 
that of standard dynamic time warping. In related work, 
Steiner and Richmond [10] proposed a gestural score 
generation for the VTL model using a source phonemic 
transcription. The authors posed the score generation problem 
as that as determining the best path through a transition 
network modeled after a finite state automata. They used 
Viterbi search to determine the path that maximized the 
correlation between synthetic EMA trajectories generated by 
VTL and those of a source speaker. Their results were 
preliminary, but they found moderate correlation with the 
synthetic and source EMA trajectories. 

A related method to SABR is the Temporal 
Decomposition (TD) of Atal et al. [11].  TD represents an 
utterance � as a linear combination of acoustic basis functions 
Φ: � = �Φ. Unlike SABR weights, the basis functions Φ in 
TD capture a set of acoustic parameters in addition to the time 
frame those parameters are observed; the amplitudes, �, 
modify the magnitude of those parameters independent of 
time. The temporal component of the basis functions allowed 
the authors to estimate when “speech events” occurred.  

2.1. VocalTractLab 
VocalTractLab (VTL) [1] is a physical model of the vocal 
tract that includes both a synthesizer and a gesture-based 
control model [2]. The model represents the vocal tract using 
seven meshes and controls articulations of these surfaces with 
21 “tract parameters”. VTL’s gestures are represented as 
specific locations of each of these control parameters; degrees 
of constriction are not a direct parameter in the VTL gestures. 
Given a gestural score, VTL models motion between 
successive gestures as a 10th-order dampened system. For 
more details on VTL’s control model, please see [12]. 

3. Methods 
The proposed methods are based on our prior work on the 
development of SABR (Sparse Anchor-Based Representation) 
[5]. SABR is a speech decomposition method that uses a set of 
speaker-dependent acoustic vectors as “anchors.” Given a 
source utterance � ∈ ℝ� × 	 and a set of speaker anchors 

 ∈ ℝ� × �, SABR represents an utterance as: 

� = 
� (1) 
where � ∈ ℝ� × 	 is a set of weights, one channel per acoustic 
anchor, of length equal to that of the source utterance. SABR 
uses a sparse, nonnegative least squares (NNLS) solver (Lasso 
[13]) to solve for �, resulted in a speaker-independent 
representation of the utterance.  

3.1. Improvements to SABR 
A limitation of the original SABR algorithm is that it 
considers each acoustic frame independently of all others. As a 
result, phonemes with more turbulence tend to have less 
temporal stability in SABR weights.  The following sections 
describe modifications to the SABR algorithm and anchor set 

to improve temporal stability of the representation, which is 
essential for gestural score generation.  

3.1.1. Windowed SABR 

Typically, the less sonorant a phoneme is, the lower the 
temporal stability of its SABR weights (see figure 1a); this 
lack of stability hampers interpreting SABR in an articulatory 
context. To address this, we modified SABR to enforce 
sparsity over an analysis window spanning multiple acoustic 
frames. Specifically, given a window 
 centered on frame �, 
we add up the SABR weights for each anchor and select the 
two anchors ��and �� with the highest cumulative weights: 

argmax
��,��

� ����,	 + ���,	�
���

	����
 (2) 

We solve again for the weights at frame � using NNLS but 
only consider the anchors chosen in equation (2): 

min |��� − [
�� 
��][���,� ���,�]�| (3) 
This step is intuitively similar to Modified Restricted 
Temporal Decomposition [14], in that it limits the number of 
active anchors at any one frame and takes into account prior 
and future weights at a given frame. 

3.1.2. Manner filtering 

Even after the temporal smoothing step in equations (2) and 
(3), anchors with similar manner of articulation may still be 
confounded. Consequently, we group weight channels 
according to the manner of articulation1 of their respective 
anchor; each “manner channel” is the sum of the SABR 
weights that have the same manner of articulation. For a set of 
manners Γ, the manner weights � ∈ ℝ|�| × 	 are: 

�!,� = � �",� #. $.  % = {∀� ∈ � ∶ %�((�) = -}
!∈�

 (4) 

where %�((�) returns the manner of articulation of the anchor 
�. The resulting manner channels have more temporal stability 
than windowed SABR weights; see Figure 1(a-b). We take 
advantage of this stability to update the SABR weights as 
follows. Each channel of � is sparse, comprised of 
                                                                 
 
1 We classified each anchor according to one of the following 
manners: vowel, stop, fricative, approximant, or occlusive. 

(a) 

 
(b) 

Figure 1: SABR modifications and keyframe detection. (a) Iterative 
SABR weights. (b) The same weights as the previous figure, but 
grouped by manner of articulation. The ground-truth phonemic and 
orthographic transcriptions are included for reference. Triangles 
identify peaks of the manner channels, which we call “keyframes”. 
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contiguous, nonzero regions. For each contiguous region /, 
we examine the SABR weight channels in that region and use 
the manner weights to replace the SABR weights as follows. 
For all SABR channels �: 

��,0 = 1�"�	(�),0 if � = �23%�4� Σ��,0
0            otherwise  (5) 

If a SABR channel has the highest cumulative weights in the 
region / , we assign the SABR channel in that same region the 
weights from the manner weights �. Otherwise, we set the 
weights for that anchor and spanning that region to zero. 

3.1.3. Multimodal SABR models 

The original SABR implementation uses phoneme centroids as 
anchors (i.e., one anchor per phoneme). When used to generate 
gestural scores, this model is limited because not all phonemes 
can be represented by a single segmental state. As an example, 
consider stops, which have closure, stop, and release 
segments—these segments all represent different acoustic 
segments of the same stop gesture. 

To address this issue, we modified our anchor-building 
procedure in two ways. First, we made rules for either 
removing or expanding our anchor set based upon segmental 
properties of the phonemes the anchors represent—see Table 
1. Phonemes with multiple segments received an increase in 
the number of anchors accordingly. However, if the segments 
of that phoneme exist outside of that phonemic context 
(consider the affricative /dʒ/, which transitions between /d/ and 
/ʒ/), we remove that anchor entirely. 

Second, when a phoneme was represented by ( anchors, 
we used Ward’s Method [15] as a criterion to cluster the 
anchors within that phoneme. Our clustering only had two 
levels—a root level, and a leaf level with ( leaves that 
represented our cluster centers. Once we computed the cluster 
centers we use the closest sample in the dataset as the anchor.  

3.2. Selecting keyframes using SABR weights 
We use the weights that result from the modified SABR 
procedure to infer the timing of articulatory transitions. 
Namely, we assume that a local maximum in a SABR weight 
indicates a transition of the vocal tract towards a new gestural 
target. In deference to the animation literature, we refer to 
these SABR peaks as “keyframes.” These keyframes are the 
basis for selecting gesture timings in our approach. 
Specifically, we choose keyframes as the union of all peaks of 
each SABR weight channel. Given a set of � anchors, we 
define the SABR keyframes as: 

789:0 =  ; <>�?#(��)
�

��@
 (6) 

where A� is the �th frame of A and <>�?# returns the set of 
locations of positive-valued positions where the second 
derivative of the channel is negative. We found that first 

filtering the weights with a smoothing filter of width 15ms 
made the peaks interpretable.   

3.3. Gestural score transform 
To generate a gestural score, we define a phoneme map 
B: � → E, F, where � is a SABR anchor, E is a VTL gesture, 
and F is a VTL “tier”. We built the map B manually, 
according to known places and manners of articulation for 
each anchor (based on specifications in TADA [9]). VTL 
defines two classes of gestures: vowel gestures and consonant 
gestures. Vowels belong to one tier, whereas consonants are 
associated to three different tiers and define lip, tongue tip, 
and tongue body gestures1.  

For vowels, we assign gestures at each frame by finding 
the maximum SABR vowel weight at that frame. If there are 
no vowels with weights at that frame, we look ahead until the 
first frame with a vowel weight, and propagate that back 
through the empty frames; see Figure 2(c). This is required 
since VTL vowel gestures are always active [12]. 

For each consonant tier F, we consider the SABR weight 
channels  that belong to tier. We use the phoneme map B to 
map each weight channel to a corresponding gesture and tier, 
as each weight channel is associated with a specific anchor. 
Since weight channels are sparse, we consider each group of 
contiguous nonzero weights an expression of a gesture. We 
then find two keyframes within the time range of that gesture 
to map the onset and offset times of the gesture E associated 
with that weight channel. The onset keyframe is the first 
keyframe before the first positive weight value, and the offset 
of the gesture is the last keyframe within that group of 
weights; see Figure 2(d). 

4. Data 
We validated the method on an articulatory corpus from a 
North American English speaker, described elsewhere [16].  
Seven EMA pellets (upper and lower lips, upper incisor, jaw, 
tongue tip, tongue middle, tongue rear) were placed in the 
subject’s vocal tract, and samples were collected at a rate of 
200 Hz. The upper incisor was used as a reference point for 
the other 6 points and the X and Y positions for these points 
were tracked, resulting in 12 EMA channels. The corpus 
included 344 sentences from the Glasgow Herald corpus. Of 
these utterances, we selected a subset of 20, which maximized 
phoneme balance, to conduct our experiments.  

As in our prior work [5], we used STRAIGHT [17] to 
extract spectral envelopes from the source speaker, then 
computed 24 Mel-Frequency Cepstral Coefficients for use in 
our acoustic SABR model.                                                                   
 
1 VTL has four additional tiers relating to the degree of velum 
opening, glottal shape, pitch, and lung pressure. We do not consider 
them here as we are more concerned with supraglottal motions. 

Table 1: rules for generating multimodal SABR anchors 
Phoneme class States Rationale 

Voiced stops 2 Stop and release segments 
Unvoiced stops 3 Stop, release, and optional aspiration 

segment 
Diphthongs 0 Removed, as these transitions between 

two vowel states 
Affricatives 0 Removed these, as they transition 

between stop and fricative states 

 
(c) 

 
(d) 

Figure 2: Gestural score transform. (c) Using SABR weights to build 
the VTL vowel gestures. (d) Using SABR weights and extracted 
keyframes to build a non-vowel VTL gesture tier. 
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5. Results 

5.1. Keyframe interpretation 
As a first experiment, we compared our estimated keyframes 
789:0 against those extracted from EMA pellets. For a given 
pellet <, its EMA trajectory data, GH, has both X and Y 
channels. We compiled EMA keyframes, 7IJ9 as: 

7IJ9 = ; <>�?#(ΔGH)
∀H

  (7) 

where ΔGH is the Euclidean distance between successive 
frames of GH.  

We hypothesized that if SABR keyframes capture 
articulatory changes there should be the same number of 
SABR keyframes as there are EMA keyframes: 

|789:0| ≈ |7IJ9| (8) 
Additionally, we hypothesized that the positions of SABR and 
EMA keyframes should be approximately the same, that is: 

∀k ∈ KNOPQ, min(||k − 7IJ9||) → 0 (9) 
We extracted SABR keyframes over a range of window sizes 
and evaluated eqs. (8) and (9). For a set of SABR keyframes 
extracted for a window size, we evaluated eq. (8) by 
computing the ratio of the cardinality of SABR and EMA 
keyframe sets. For eq. (9), we computed the average distance 
from each SABR keyframe to the nearest EMA keyframe. As 
a measure of baseline performance, we also compiled a 
random set of frames, 70RS, of the same cardinality as 789:0, 
and evaluated their performance in the same manner as the 
SABR keyframes. 

Results are shown in Figure 3. A window size of 24 ms 
minimizes the average distance to the nearest keyframe to 
15.06 ms. The randomly-selected keyframe had significantly 
higher distances to EMA keyframes (< < 0.01) than the 

SABR keyframes, suggesting that the SABR keyframes are 
not finding articulatory changes by chance.  Interestingly, the 
ratio of SABR to EMA keyframes also peaks for a window 
size of 24 ms; see Figure 3 (b).  

5.2. Gestural score estimation 
In a second experiment, we used the gestural score generation 
algorithm from section 3.3 to build scores from the 20 source 
utterances. For a given gestural score, VTL is able to 
synthesize EMA pellet trajectories by tracking vertices of the 
underlying anatomy meshes. To measure how well our 
generation algorithm worked, we computed the correlation 
between synthetic and source EMA data. 

Using the window size that maximized the key ratios and 
minimized the average keyframe distance, we use the 
algorithm in section 3.3 to generate gestural scores from VTL. 
To account for the fact that gestures are active before motion 
begins, we offset the gesture activation times by 75 ms, similar 
to what Birkholz reported in [18]. Using a window size of 24 
ms, the synthetic gestural scores had an average correlation 
across all channels of V = 0.26. However, the lip EMA pellets 
were for the most part uncorrelated; when we examined only 
the correlation of the tongue pellets, we found a higher 
average correlation of V = 0.38—see Figure 4. 

6. Discussion 
In this paper, we proposed a technique to generate gestural 
scores for VocalTractLab from “keyframes” extracted from 
SABR weights. This technique relied on some modifications 
to the SABR method to make the representation more 
temporally stable. In a first experiment, we found that the 
SABR keyframes were, on average, within 15 ms of the 
observed articulatory events. In a second experiment, we 
measured the correlation of the synthetic EMA trajectories 
from the VTL model driven with our gestural score method 
with trajectories from a source speaker. We found that there 
was moderate correlation on tongue channels, but less so on 
lip and jaw channels. 

Several factors account for the correlation performance. 
First, we did not adjust the articulatory effort for each gesture; 
the VTL model reached gestural targets more quickly than the 
source speaker and transitions were not as smooth (Figure 5). 
Secondly, we used the default VTL model, and EMA pellet 
positions may not be optimal. Third, adjacent phonemes with 
the same manner of articulation were combined into one 
gesture because of our manner filtering step.  

Future work includes improving the SABR weight 
smoothing procedure by incorporating smoothing constraints 
in the NNLS step. As keyframes provide some knowledge of 
articulatory events, it may be beneficial to use these features in 
a small-model speech synthesis context, such as SABR voice 
conversion. 

 
(a) 

 
(b) 

Figure 5: EMA trajectories for the word “chefs” from source speaker 
(a) and VTL (b).  

(a) (b) 
Figure 3: keyframe distance and ratio comparisons. (a) the mean 
keyframe distance. SABR keys have significantly lower average 
distances than randomly-chosen keys. (b) the ratio of the number of 
SABR keyframes to the number of EMA keyframes. 
 

 
Figure 4: correlations between synthetic and collected EMA data. All 
channels had an average correlation of < = 0.26, but the tongue 
channels (highlighted) had an average of < = 0.38. 
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