
Stacked long-term TDNN for Spoken Language Recognition

Daniel Garcia-Romero and Alan McCree

Human Language Technology Center of Excellence
The Johns Hopkins University, Baltimore, MD 21218, USA

dgromero@jhu.edu, alan.mccree@jhu.edu

Abstract

This paper introduces a stacked architecture that uses a time
delay neural network (TDNN) to model long-term patterns for
spoken language identification. The first component of the ar-
chitecture is a feed-forward neural network with a bottleneck
layer that is trained to classify context-dependent phone states
(senones). The second component is a TDNN that takes the
output of the bottleneck, concatenated over a long time span,
and produces a posterior probability over the set of languages.
The use of a TDNN architecture provides an efficient model
to capture discriminative patterns over a wide temporal con-
text. Experimental results are presented using the audio data
from the language i-vector challenge (IVC) recently organized
by NIST. The proposed system outperforms a state-of-the-art
shifted delta cepstra i-vector system and provides complemen-
tary information to fuse with the new generation of bottleneck-
based i-vector systems that model short-term dependencies.

Index Terms: language recognition, deep neural networks,
long-time span

1. Introduction
Modeling very long-term acoustic dependencies (in the order
of seconds) for spoken language recognition is a largely unex-
plored area, mostly due to the difficulty in designing models
that can efficiently capture such long range dynamics. In this
work we propose a stacked architecture that uses a time delay
neural network (TDNN) [1] to accomplish this goal. The first
component of the architecture is a feed-forward neural network
with a bottleneck (BN) layer that is trained to classify context-
dependent phone states (senones). BN features, in combina-
tion with an i-vector system, are becoming the next generation
language recognition systems due to their outstanding perfor-
mance [2, 3, 4, 5, 6]. Our architecture takes advantage of the
discriminative power of the BN features, but our second com-
ponent (TDNN) is trained to directly produce frame-by-frame
posteriors over the set of languages. In this way, the TDNN is
replacing the i-vector classifier in a similar way as in other di-
rect systems [7, 8, 9]. However, the use of BN features and a
much wider temporal context differentiates our proposed sys-
tem from previous work. Out stacked architecture is trained in
two stages like other stacked systems [10, 5]. This approach
simplifies the training greatly.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the baseline systems and summarizes the role
of the TDNN. Section 3 describes our datasets and metrics. Sec-
tion 4 presents the procedure to train the systems, and the ex-
perimental results. Finally, section 5 provides the conclusions.

Linear''
BN''

Hidden'layers'

So
1m

ax
''

Senone'
posteriors'

PL
P'
+'
pi
tc
h'

BN'features'
Temporal''
context'

TDNN'

So
1m

ax
''

Frame?by?frame'
language'
Posteriors'

−64 −56 −48 −40 −32 −24 −16 −8 0 8 16 24 32 40 48 56 64
Input

1

2

3

4

5

Time span (frames)

L
a
y
e
r

Figure 1: Block diagram of the stacked TDNN architecture.

2. Language Recognition Systems
2.1. Baseline i-vector system

Most state-of-the-art systems for i-vector language recognition
use classifiers such as Gaussian models, logistic regression, or
cosine scoring, followed by a multiclass back-end which pro-
vides significant performance improvement as well as produc-
ing calibrated probability outputs. We have recently demon-
strated success using only a single step: a Gaussian classifier
discriminatively trained using Maximum Mutual Information
(MMI) [11]. This system serves as the acoustic baseline for
this paper.

2.2. Bottleneck i-vector system

Hand-crafted shifted delta cepstra features (SDC) derived from
MFCCs used to be the best feature representation for lan-
guage recognition. Recently, BN features extracted from a
feed-forward neural network that is trained to classify context-
dependent phone states (senones) have been shown to greatly
outperform SDC features [2, 3, 4, 5]. The intuition for their
success is that, since they are trained to discriminate between
fine-grained phonetic categories, they must capture phonetically
rich information with some invariance to channel and speaker
variability. The first block of Figure 1 shows the DNN that is
used to compute the BN features. Note, that the BN layer is
linear. It is possible to use a non-linear BN, but our experience
has been that linear BN layers produce features that are easier to
model by the GMM of the i-vector extractor. Once, the BN fea-
tures are extracted, the BN i-vector system pipeline is identical
to our baseline system.

2.3. Stacked TDNN system

As shown in Figure 1, the stacked TDNN system takes advan-
tage of the superior discriminative power of the BN features,
and uses a TDNN to directly produce frame-by-frame posteri-
ors over the set of languages. A cut level score can be obtained
by averaging the input vectors of the LID softmax layer. Note

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-13343226

that the large temporal context makes the frame-by-frame pos-
terior very redundant and smooth across time. This allows for
a large temporal downsampling (i.e. strides much bigger than 1
frame) when producing a cut level score.

The TDNN is capable of efficiently modeling wide tempo-
ral contexts due to its hierarchical multi-resolution nature. In
particular, the input layer processes a narrow temporal context
that keeps expanding as the information flows towards higher
layers [1]. The configuration of the hierarchical structure con-
trols how the information is processed. Figure 2 shows a sym-
metric architecture of a 5 layer TDNN that processes a context
of 128 frames. The branches of the tree indicate the temporal
indices of the inputs to the layer. That is, the input to layer
5 is the concatenation of the output of layer 4 from time in-
dices -32 and 32 relative to the center frame being processed
(time index 0). Continuing down in the hierarchy, we see that
layer 4 only proceses 2 inputs during the entire timespan of 128
frames. The first one is constructed by concatenating the output
of layer 3 at time indices -48 and -16. The second one is the
symmetric counterpart with indices 16 and 48. As we progress
further down, we can see that the information being processed
corresponds to narrower contexts. Also, the parameters of the
weight matrices are tied across the inputs to the layer. That is,
the 2 inputs processed by layer 4 were multiplied by the same
weights. Parameter tying and the sparse temporal sampling of
the hierarchical structure are responsible for the efficiency of
the TDNN.

3. NIST language i-vector challenge
3.1. Datasets

In 2015 NIST coordinated the first language recognition evalu-
ation that distributed i-vectors to participants [12]. The speech
data used to produce the i-vectors was collected over the tele-
phone channel (telephone conversations and narrowband broad-
casts) and comprised 65 languages. The official task for the
IVC was open-set language identification. The task was defined
using 3 datasets: train, dev, and test. The train set provided la-
beled data for 50 languages. The dev set had data from all 65
languages, but the labels were not provided. Finally the test set
had 100 cuts from each of the 65 languages and was used to
evaluate the systems.

For this work, we are not interested in the open-set compo-
nent of the evaluation, but still want to take advantage of the pre-
defined test set with the largest number of languages available
to us. Therefore, we are going to merge the train and dev sets
and use their labels for the 65 languages. Moreover, our col-
leges from Lincoln Laboratories (who organized and provided
the audio for the IVC) shared an additional set that had more
labeled data for some of the languages but was highly unbal-
anced. We refer to this set as the background (bkg) set. For our
system we will use the bkg+dev+train set with all the labels.
Note that regardless of all the data reorganization, the test set is
kept the same as in the official IVC.

3.2. Metrics

Since the test set comprises 100 cuts per language, the experi-
mental setup can be used to produce 6500 identification trials,
or 6500 × 65 = 422500 detection trials. To keep the connec-
tion with the IVC we evaluate hard identification decisions in
terms of probability of error Pe. Also, as is customary in regu-
lar NIST language recognition evaluations (LRE) that evaluate
detection, we use the standard Cavg metric [13].

−64 −56 −48 −40 −32 −24 −16 −8 0 8 16 24 32 40 48 56 64
Input

1

2

3

4

5

Time span (frames)

La
ye

r

Figure 2: Temporal subsampling of a TDNN with 5 hidden lay-
ers and a total input context of 128 frames.

4. Experiments
4.1. System setups

4.1.1. Baseline

The baseline system for these experiments is the acoustic i-
vector system presented in [11]. Feature processing uses 24
Mel Frequency Cepstral Coefficients (MFCC) from 0-4 kHz,
windows of 25 ms length with 10 ms shift, vocal tract length
normalization (VTLN) trained with four iterations of speaker
adaptive training, RASTA filtering, conversion to MFCCs,
shifted delta cepstra (SDC) coefficients with 7-1-3-7 config-
uration, static cepstra appended to produce a 56-dimensional
feature vector, gating with a GMM-based speech activity de-
tector, and feature vector mean and variance normalization
with a 3 second sliding window. The resulting feature se-
quence is then aligned to a 2048 mixture GMM trained on
all the available (bkg+dev+train) cuts of duration longer than
30 seconds, and a 600-dimensional i-vector is estimated using
an i-vector extractor trained on the same set. Whitening and
length-normalization [14] are applied, followed by diagonal-
ized LDA dimension reduction to 64 dimensions. A multiclass
Gaussian classifier is used for language recognition in i-vector
space, with the shared within-class covariance and class means
first estimated by the sample covariance and means, followed
by discriminative refinement of first the covariance scale fac-
tor and then the class means using MMI. All the components
in the i-vector space pipeline were trained using all the data
(bkg+dev+train), except for the refinement step which only used
the train subset (as it was found to work better).

4.1.2. Bottleneck

We trained our DNN using the Kaldi speech recognition toolkit
(nnet2 framework). The BN DNN is trained to minimize cross-
entropy with respect to a set of senone labels. The labels (i.e.
frame alignments to senones) are obtained from a standard tied-
state triphone GMM-HMM system trained with maximum like-
lihood on the Fisher English database. The senone set is ob-
tained by clustering the states using a decision tree and the
number of total Gaussians was set to 300K. The number of
senones after the clustering was 7611. The input features for the
GMM-HMM system are 40 dimensional vectors obtained from
an LDA+MLLT projection of 7 spliced frames of 13 MFCCs.
These features are further processed by an fMLLR transform to
perform speaker adaptation.

3227

Our BN architecture uses 6 hidden layers of 2048 sigmoid
nonlinearities. An 80 dimensional linear bottleneck is placed
between the 5th and 6th sigmoid layers. The input to the DNN
are 25 spliced vectors of 13 plp + 3 pitch features [15].

The DNN training algorithm performs back propagation us-
ing mini-batch pre-conditioned gradient descent and parameter
averaging [16]. Data parallelization is accomplished by training
n replicas of the DNN (n = 4 for our system) independently on
disjoint subsets of data and combining them periodically by av-
eraging their parameters. Once a new updated DNN is obtained,
it gets replicated and asynchronous training is performed again.
We refer to each one of these stages of “replicate-train-merge”
as an iteration. An epoch (i.e. a run over the entire training
dataset) consists of a fixed number of these iterations. During
an iteration, each replica does back propagation over 300,000
training examples (using mini-batches of size 512). We use an
exponential decay schedule for the learning rate and minimize
negative cross entropy for a fixed number of epochs. Conver-
gence is monitored on a validation set in terms of cross entropy
and frame accuracy.

To obtain the BN features we strip the layers after the linear
bottleneck and perform a forward pass on the data. The num-
ber of parameters after stripping the layers is reduced from 33
million to 18 million. The resulting features are post-processed
using a per cut mean and variance normalization. Then, these
BN features are used in the baseline system instead of the SDC
features. All the components of the pipeline are identical to the
baseline system to compute and classify the i-vectors.

4.1.3. Stacked TDNN

The first component of the stacked TDNN is the BN DNN de-
scribed above. The second component is a TDNN that uses p-
norm non-linearities with p = 2 and an input/output dimension
pooling ratio of 10 (e.g. 3000/300) [17]. The parameter-tying
across time provides an efficient model for long time spans
without an explosion of the number of parameters. Figure 1
shows the pattern of the temporal splicing used in this work.
Increasing or reducing the number of hidden layers allows the
time span to change while keeping the same structure in the
layers. The number of parameters depends on the size of the
p-norm layers, number of layers, and splicing architecture. In
the experiments we explore different configurations of these pa-
rameters.

The frame-by-frame nature of this system exacerbates the
problem of training data imbalance. In our dataset, the num-
ber of training cuts per language is already imbalanced and they
have widely variable durations. To alleviate this problem, we
used two strategies. First, we truncated cuts longer than 60 sec-
onds. Second, we used a weighted cross-entropy to balance
the objective function and reduce the dominance of a subset
of languages. The smallest weights were given to English and
Vietnamese (0.17). Balancing the training set using these tech-
niques was beneficial in terms of performance and training time.

To generate training examples, we pasted together all the
frames from the same cut after removing the silence. This pro-
cedure introduces edge effects but greatly simplifies the process.
The same approach is used for the test data. As future work we
plan to examine if this decision has detrimental impact in terms
of performance.

Using a 1 frame shift, the total number of potential training
examples from the bkg+dev+train data is approximately 255
million (with a median of 2.5 million frames per language).
Note that by example we mean a contiguous block of BN fea-

tures equal to the time-span of the TDNN (e.g. 512 frames of
BN features). Due to the large temporal context, these examples
are highly redundant and care must be taken when organizing
the data for each iteration. To create the training data, we shuf-
fled the examples so that a model replica would see diverse and
minimally redundant data for each iteration (i.e. small temporal
overlap between examples). Also, we distributed training exam-
ples with small time-shifts across the datasets for each replica to
facilitate convergence of the model averaging step (i.e. keeping
the replicas from moving too far from each other due to very
different training data per iteration).

In this work, we have trained the stacked TDNN system in
two stages. The first stage trains the BN DNN as described in
the previous section. The second stage treats the output of the
BN component as features and only trains the TDNN layers.
The TDNN training stage also uses mini-batch pre-conditioned
gradient descent and parameter averaging [16]. During an iter-
ation, each replica does back propagation over 300,000 training
examples (using mini-batches of size 512). We set an exponen-
tial decay schedule for the learning rate and minimize negative
cross entropy. Convergence is monitored on a validation set in
terms of cross entropy and frame accuracy. However, unlike in
the BN case, we do not run for a fixed number of epochs. In-
stead, we use a counter for the number of unsuccessful iterations
where the cross-entropy on the validation set does not improve.
Every 5 failed attempts we halve the learning rate and restart the
process using the model with the best validation cross-entropy.
We allow 5 of these coarse reductions in learning rate before we
stop the training. The final network is the one that provides the
best validation error during this process.

The validation set plays a significant role in this approach.
We designed it to comprise 500 training example for each of
the 65 languages. The examples for each language were ex-
tracted from 10 randomly selected cuts from the full set of
bkg+dev+train data. The selected cuts were not included in
the DNN training set. Comparing this learning schedule with
the simpler exponential decay, we observed that the final per-
formance was the same and the training time was significantly
reduced (from one day to around 6 hours, in both cases using 4
GPUs).

In order to obtain per cut scores on the test data, we aver-
age over time the 65 dimensional vectors prior to the softmax
component of the TDNN. We treat this average as a vector of
language log-likelihoods. For test cuts shorter than the tempo-
ral context of the TDNN, we pad the input by repeating the first
and last frames evenly. Multi-class calibration using a common
scale and a per language bias is trained on the validation data
with the Focal toolkit [18]. For the language identification task
(measured by probability of error Pe), we pick the language
with the largest log-likelihood in the score vector. For the lan-
guage detection task (measure by Cavg), we apply Bayes rule to
the calibrated vector of scores and then map it back to a vector
of detection log-likelihoods.

4.2. Results

4.2.1. Performance comparison

The top two rows of Table 1 show the performance of the i-
vector systems: the baseline system that uses SDC features,
and the newer generation of systems that use BN features from
a DNN trained for speech recognition. Although, the baseline
system represents what until very recently was considered as a
strong state-of-the-art system (with VTLN and SDC features),
the BN i-vector system greatly outperforms it (approximately

3228

Table 1: Performance results for the systems as well as the number of parameters they use. The * indicates that an oracle (trained on
the test data) multi-class calibration has been applied. This serves as an optimistic upper bound on performance.

Systems
Number of parameters (in millions)

millions)
TDNN
p-norm Pe (%) Cavg x 100 Pe* (%) C*avg x 100

T mtx BN TDNN Total
Baseline 69 - - 69 - 14.7 3.12 14.1 2.84
BN i-vec 98 18 - 116 - 8.9 1.91 8.7 1.73

Stacked TDNNs
512 frames of

context

- 18 2 20 1000/100 15.0 2.42 13.2 2.09
- 18 6 24 2000/200 13.3 2.09 11.7 1.81
- 18 13 31 3000/300 11.4 2.03 10.1 1.66
- 18 22 40 4000/400 11.1 1.99 9.6 1.52
- 18 34 52 5000/500 10.8 1.92 9.6 1.55
- 18 48 66 6000/600 10.9 1.93 9.3 1.60

TDNN
Context Hidden layers Parameters

(millions) Pe (%) Cavg x100

512 7 13 11.4 2.03
256 6 11 13.9 2.23
128 5 9 16.2 2.66
64 4 8 18.5 3.13

System Pe (%) Cavg x100
BN i-vec 8.9 1.91
TDNN 10.8 1.92

Sum Fusion 7.7 (14%) 1.41 (26%)

40% relative gain in both Cavg and Pe). This behavior is con-
sistent with our results (and those of other participants) in the
recent NIST LRE15 evaluation [6].

Our proposed stacked TDNN architecture also takes advan-
tage of the BN features, but it is designed to learn discriminative
patterns over a wider temporal context (up to 5 seconds in this
work). Moreover, the TDNN component is trained to directly
produce posterior probabilities over the set of target languages.
The bottom part of Table 1 shows the performance of different
stacked TDNN systems where the number of parameters is in-
creased by changing the size of the p-norm component. All the
networks use 7 hidden layers with the splicing pattern showed
in Figure 1, and model a temporal context of 512 frames. The
performance of the systems increases with the number of pa-
rameters but seems to saturate for a p-norm size of 5000/500.
The relative gains of the best TDNN with respect to the base-
line are also around 40% in Cavg , but slightly smaller for the Pe

(27%). These results are obtained with a number of parameters
smaller than the baseline system (52 vs 69 million), and almost
50% less than the BN i-vector system. Note, that in terms of
Cavg the BN i-vector and the stacked TDNN systems perform
the same, but the stacked TDNN is worse in terms of Pe. This
seems to indicate that the BN i-vector system might not be well
calibrated. However, after applying an oracle (trained on the
test data) multi-class calibration on the scores using Focal the
trends are the same (results shown with an *). This legitimizes
the observation that the stacked TDNN is performing very well
for the detection task measured by Cavg .

4.2.2. Fusion gains

Although the stacked TDNN system performs very well on its
own, the difference in training criterion (directly targeting the
languages) as well as the temporal context makes it a good can-
didate to complement the BN i-vector system. To verify this
hypothesis, we performed a simple sum fusion of their scores
(i.e. summed the scores and divided by 2). The fusion results in
a Pe of 7.7 (14% gain) and a Cavg of 1.41 (26% gain).

4.2.3. Temporal context analysis

Table 2 shows the performance of stacked TDNNs with p-norm
3000/300 as a function of the temporal context modeled. The
time span was changed by keeping the splicing pattern fixed and
reducing the number of hidden layers. It is clear that the stacked
TDNN system benefits from looking at large temporal contexts.
The performance increases as the temporal context increases.

Table 2: Performance of stacked TDNNs with p-norm 3000/300
as a function of the temporal context modeled. The time span
was changed by keeping the splicing pattern fixed and reducing
the number of hidden layers.

Systems
Number of parameters (in millions)

millions)
TDNN
p-norm Pe (%) Cavg x 100 Pe* (%) C*avg x 100

T mtx BN TDNN Total
Baseline 69 - - 69 - 14.7 3.12 14.1 2.84
BN i-vec 98 18 - 116 - 8.9 1.91 8.7 1.73

Stacked TDNNs
512 frames of

context

- 18 2 20 1000/100 15.0 2.42 13.2 2.09
- 18 6 24 2000/200 13.3 2.09 11.7 1.81
- 18 13 31 3000/300 11.4 2.03 10.1 1.66
- 18 2 40 4000/400 11.1 1.99 9.6 1.52
- 18 34 52 5000/500 10.8 1.92 9.6 1.55
- 18 48 66 6000/600 10.9 1.93 9.3 1.60

TDNN
Context Hidden layers Parameters

(millions) Pe (%) Cavg x100

512 7 13 11.4 2.03
256 6 11 13.9 2.23
128 5 9 16.2 2.66
64 4 8 18.5 3.13

It could be possible that this is an artifact due to the way the
context was decreased by removing hidden layers. However,
modifying the splicing pattern to keep the number of hidden
layers constant resulted in worse performance. Also it is the
case that the number of parameters of the TDNNs with shorter
context is smaller. But Table 1 shows that a TDNN with p-norm
2000/200 and a context of 512 frames used 6 million parame-
ters and still outperforms the shorter context TDNNs that have
more parameters. Finally, it seems that increasing the context
beyond 512 frames might be a good way to keep improving per-
formance. For this work, we did not explore that option since
20% of the test data is shorter than 10 seconds, and as usual the
errors are mostly coming from short test segments.

5. Conclusions
In this paper, we have introduced a stacked architecture that
uses a time delay neural network (TDNN) to model long-term
patterns for spoken language identification. Experimental re-
sults were presented using the audio data from the language i-
vector challenge. We evaluated the proposed system in a closed-
set language identification task, as well as in a detection task.
The proposed system outperforms a baseline SDC i-vector sys-
tem by 40% in terms of Cavg and provides a relative gain of
27% in identification accuracy. Moreover, the stacked TDNN
matches the detection performance of a BN i-vector system
that models short-term dependencies. A fusion of the stacked
TDNN system with the BN i-vector system results in signifi-
cant gains. This validates the ability of the stacked TDNN sys-
tem to capture discriminative long-term dependencies that com-
plement the shorter-term patterns captured by the BN i-vector
system.

3229

6. References
[1] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay

neural network architecture for efficient modeling of long
temporal contexts,” in Interspeech, 2015.

[2] Y. Song, B. Jiang, Y. Bao, S. Wei, and L. Dai, “I-vector
representation based on bottleneck features for language
identification,” in IEEE Electronic Letters, 2013.

[3] P. Matejka, L. Zhang, T. Ng, S. H. Mallidi, O. Glembek,
J. Ma, and B. Zhang, “Neural network bottleneck features
for language identification,” in Odyssey: The Speaker and
Language Recognition Workshop, 2014.

[4] F. Richardson, D. Reynolds, and N. Dehak, “Deep neural
network approaches to speaker and language recognition,”
in IEEE Signal Processing Letters, 2015.

[5] R. Fer, P. Matejka, F. Grezl, O. Plchot, and J. Cernocky,
“Multilingual bottleneck features for language recogni-
tion,” in Interspeech, 2015.

[6] A. McCree, G. Sell, and D. Garcia-Romero, “Augmented
data training of joint acoustic/phonotactic DNN i-vectors
for NIST LRE15,” in Odyssey: The Speaker and Lan-
guage Recognition Workshop, 2016.

[7] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot,
D. Martinez, J. Gonzalez-Rodriguez, and P. Moreno, “Au-
tomatic language identification using deep neural net-
works,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2014.

[8] J. Gonzalez-Dominguez, I. Lopez-Moreno, H. Sak,
J. Gonzalez-Rodriguez, and P. Moreno, “Automatic lan-
guage identification using long short-term memory recur-
rent neural networks,” in Interspeech, 2014.

[9] J. Gonzalez-Dominguez, I. Lopez-Moreno, P. Moreno,
and J. Gonzalez-Rodriguez, “Frame-by-frame language
identification in short utterances using deep neural net-
works,” in Neural Networks, vol. 64, 2015.

[10] K. Vesely, M. Karafiat, F. Grezl, M. Janda, and
E. Egorova, “The language-independent bottleneck fea-
tures,” in IEEE Spoken Language Technology Workshop
(SLT), 2012.

[11] A. McCree, “Multiclass discriminative training of i-vector
language recognition,” in Proc. Odyssey, 2014, pp. 166–
172.

[12] A. Tong, C. Greenberg, A. Martin, D. Banse, H. Zhao,
G. Doddington, D. Garcia-Romero, A. McCree,
D. Reynolds, E. Singer, J. Hernandez-Cordero, and
L. Mason, “2015 NIST language recognition i-vector
machine learning challenge,” in Odyssey: The Speaker
and Language Recognition Workshop, 2016.

[13] “The NIST year 2009 language recognition eval-
uation plan,” http://www.itl.nist.gov/iad/mig/tests/lang/
2009/LRE09 EvalPlan v6.pdf, 2009.

[14] D. Garcia-Romero and C. Espy-Wilson, “Analysis of i-
vector length normalization in speaker recognition sys-
tems,” in Interspeech, Florence, Italy, August 2011.

[15] P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer,
J. Trmal, and S. Khudanpur, “A pitch extraction algorithm
tuned for automatic speech recognition,” in International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2014.

[16] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training
of deep neural networks with natural gradient and param-
eter averaging,” in International Conference on Learning
Representations (ICLR), submitted, 2015.

[17] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Im-
proving deep neural network acoustic models using gen-
eralized maxout networks,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP),
2014.

[18] N. Brummer, “Focal multi-class: Toolkit for evaluation,
fusion and calibration of multi-class recognition scores,”
in Technical Report, 2007.

3230

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Daniel Garcia-Romero
	Also by Alan McCree
