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Abstract
This paper analyzes the application of methods developed in au-
tomatic speech recognition (ASR) to better understand neural
activity measured with electrocorticography (ECoG) during the
presentation of speech. ECoG data is collected from temporal
cortex in two subjects listening to a matrix sentence test. We in-
vestigate the relation of ECoG signals and acoustic speech that
has been processed with spectro-temporal filters, which have
been shown to produce robust and reliable representations for
speech applications. The organization of spectro-temporal fil-
ters into a filter bank allows for a straight-forward separation
into spectral or temporal only, as well as true spectro-temporal
components. We find electrodes positioned over the superior
temporal gyrus that is associated with the auditory cortex to
show significant specific high gamma activity to fine temporal
and spectro-temporal patterns present in speech. This indicates
that representations developed in machine listening are a suit-
able tool for the analysis of biosignals.

Index Terms: speech perception, ECoG, automatic speech
recognition, robust feature extraction

1. Introduction
Findings about the auditory system have influenced research in
automatic speech recognition (ASR), which often resulted in
more robust machine listening [1, 2]. Although a closer con-
nection between ASR and human speech recognition (HSR) has
been promoted earlier to further our understanding of speech
processing in humans and machines [3], there is a compara-
tively small number of studies that bring back ASR technology
that profited from auditory insights to better understand HSR;
important exceptions are for instance [4] and [5].

In a study presenting physiological data from the primary
auditory cortex (A1) in mammals, the use of 2D Gabor func-
tions was proposed to model time-frequency representations
that elicit high firing rates in neurons (i.e., spectro-temporal re-
ceptive fields, STRFs) [6]. This motivated Kleinschmidt and
colleagues to apply 2D Gabor functions in feature extraction
in ASR [7]. When organized in a filter bank that evenly cov-
ers spectral and temporal modulation frequencies (as proposed
in [8, 9]), conventional baselines were outperformed in speech-

related tasks such as ASR based on deep learning [10], voice-
activity detection [11], and speaker identification [12]. We as-
sume these filters (shown in Fig. 1) to be speech-specific due to
their success in the previously mentioned applications, and in-
vestigate if the auditory-inspired representations can be useful
for explaining neural activity obtained from electrocorticogra-
phy (ECoG).
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Figure 1: Filter bank of 2D spectro-temporal Gabor filters ap-
plied to the speech signals. The filter output is compared to
the high gamma band activity of ECoG data and analyzed w.r.t.
spectral, temporal, and spectro-temporal filter outputs.

Cortical responses captured by ECoG measurements have
recurrently been investigated and were reported to increase in
power with the energy of the auditory stimulus during speech
perception (e.g. [13, 14, 15]). Further, temporal patterns
of auditory stimuli seem to be closely tracked by the energy
in the high gamma frequency band of electrical cortical data
[16, 17, 18]. Additionally, spectral modulations, which define
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speech-specific characteristics such as formant frequencies and
the combination of both, spectro-temporal modulations, are rep-
resented by neural responses in different cortical regions [19].
Former ECoG studies with high-density electrode grids estab-
lished a link between fundamental acoustic properties (such as
short-term spectra) and neural activity [20, 21] while others
used ASR-based methods to decode categorical units of speech
(such as phonemes or words) from brain data [22]. In this study,
we investigate if a relation can be established between ECoG
data obtained with more commonly applied low-density grids
of 1 cm inter-electrode-spacing and speech-specific representa-
tions that have a direct acoustic-physical link (in terms of spec-
tral and temporal modulations frequencies) to the original time
signal. In the next section, we describe how ECoG measure-
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Figure 2: Illustration of the analysis framework. For a larger
view on filter selection, see Fig. 1.

ments in two patients were performed, how spectro-temporal
Gabor features are calculated and grouped, and how the rela-
tion of data was analyzed. In Sections 3 and 4 the results for
different filters groups as well as individual filters are presented
and discussed; Section 5 concludes the paper.

2. Methods
2.1. Subjects, speech material and recordings

ECoG data was collected from two subjects who participated
in an audiovisual (AV) recognition task in the Schalk Lab
at Albany Medical Center (Albany, New York, USA). The
experiment was approved by the Institutional Review Boards
of the Albany Medical Center.

The AV material consists of English matrix sentences
recorded specifically for a set of ECoG experiments. The
sentences in the matrix test follow the pattern (sub-
ject)(verb)(numeral)(adjective)(object). For each of these five
groups, ten word alternatives exist which enables the generation
of 105 different sentences (e.g., Peter buys eight wet stones),
which are syntactically correct but semantically unpredictable.
The recorded words were the same as published in [25], with an
additional catchword from any of the mentioned categories (see
above). AV recordings of one female speaker were conducted
with a high-quality microphone (Røde M2) and a camcorder
with the speaker’s face centered in the frame.

Free-field speakers, a desktop PC with a monitor, and
a mouse were used for stimulus presentation and response
logging in the patients’ rooms. The experiment was divided
into three blocks of 70 sentences each. Each sentence was
followed by a target word from the complete word inventory
of the matrix test. Subjects were asked to decide whether the

target word had been presented in the preceding sentence by
pressing a yes or no button to ensure the subjects’ attention.
Presentation was either audio-visual or audio-only (A); in the
latter case, a still picture of the speaker’s face was shown
instead of the video.

Both subjects were implanted with subdural multi-electrode
grids (Ad-TechMedicalCorp., Racine, WI) due to epileptic
treatment and gave informed consent to participate in the study.
One patient was implanted on the left (79 electrodes) and the
other on the right (91 electrodes) hemisphere with electrode
grids that consisted of silicon slips with platinum-iridium elec-
trodes (4 mm in diameter, 2.3 mm exposed) embedded at an
inter-electrode distance of 1 cm. Both subjects had normal
cognitive capacity and were right-handed. ECoG signals were
amplified by a g.HIamp system (g.Tec, Graz, Austria), online
band-pass filtered between 0.3 and 500 Hz, digitized at 1000 Hz
and stored with the general-purpose software BCI2000 [23].

Noisy channels as well as those with artifacts arising from
epilepsy were identified by visual inspection of both the raw
potential and its frequency decomposition and excluded from
further analysis. Remaining channels were re-referenced with a
common average and band-stop filtered to eliminate line noise
and its harmonics. Segments during which no experimental ma-
terial was presented were discarded to minimize computational
costs. High gamma band power [70-110 Hz] was calculated
from a power-spectrogram estimated with the FieldTrip tool-
box (see [24]) using multiple Slepian tapers. The resulting high
gamma activity during speech perception was z-scored by mean
subtraction and variance removal.

A preliminary analysis based on the correlation of ECoG
high gamma activity and the short-term energy of the acoustic
waveform resulted in identical correlation results for Conditions
A and AV up to the second decimal place (rA = rAV = 0.53).
With this result and with the scope of this study in mind, ECoG
data of both conditions were grouped in the further data analy-
sis.

2.2. Speech-specific spectro-temporal filters

Gabor features of the speech material are calculated by process-
ing mel-spectrograms of the input signal by a number of 2D
modulation filters. Filtering is performed by calculating the 2D
convolution of the filter and the spectrogram. The result of the
time-aligned convolution for all filters is used as feature vector.
Gabor filters are defined as the product of a complex sinusoidal
function s(n, k) (with n and k denoting the time and frequency
index, respectively) and an envelope function h(n, k). In this
notation, the complex sinusoid is defined as

s(n, k) = exp [iωn(n− n0) + iωk(k − k0)] .

and the Hann function that we chose as envelope (with the pa-
rameters Wn and Wk for the window length) is given by

h(n, k) =

(
1

2
− 1

2
· cos

(
2π(n− n0)

Wn

))

·
(
1

2
− 1

2
cos

(
2π(k − k0)

Wk

))
.

The periodicity of the carrier function is defined by the radian
frequencies ωk and ωn, which allow the Gabor function to be
tuned to particular directions of spectro-temporal modulation,
including diagonal modulations. For this study, an arrangement
in a filter bank [8, 9] was chosen due to the good results that
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were obtained in various speech tasks with this specific imple-
mentation [10, 11, 12]. Note that the filter bank covers not only
true spectro-temporal (diagonal) filters, but also purely spectral
and temporal patterns; these were designed to be orthogonal
to each other to comply with the independence requirement of
many speech classifiers. To dissect the influence of each filter
type, the filters are segmented as shown in Fig. 1. This segmen-
tation resulted in four spectral filters (S1-S4), six temporal fil-
ters (T1-T6) and four spectro-temporal filter groups (ST1-ST4)
that are obtained by starting with the lowest ST modulation fre-
quency and choosing the adjacent filters for the next group.

2.3. Data analysis

To analyze the relation between the filter bank output and the
corresponding ECoG data, mel spectrograms of the speech in-
put were processed with all filters as it is standard procedure in
speech applications (see, i.e., [9]). The average absolute ampli-
tude was determined for each filter individually, and a filter-
specific event was triggered when the filter output value ex-
ceeded 80% average activity. A segment of 40 ms duration was
then selected from the high gamma ECoG signal, starting from
the time index of the trigger plus a time delay between 10 and
200 ms to explore the temporal relation between stimulus and
ECoG response. The calculation of a mean of the segment re-
sults in one scalar from the ECoG data per activation-triggered
event. The average and standard error for these samples of
filter-specific activations are presented in the next section. In
the plots the mean (red bar), standard error (box) and percentile
(whiskers) of the data samples are shown. Significance markers
were determined by Bonferroni-corrected two sample Student’s
t-tests and their level indicated by stars.

3. Results
3.1. Sensitivity to spectral and temporal patterns in the
temporal lobe

The segmented neural responses evoked by the filter sets shown
in Fig. 1 were examined in electrodes with the strongest audi-
tory responses during a preliminary analysis of across-sentence
averaged high gamma band power. These electrodes are located
over the temporal lobe. Only one electrode of all chosen elec-
trodes shows few sporadic incidences of low-level significant
differences between different spectral filters. This indicates a
lack of systematic effects for spectral filters in electrodes cov-
ered by the grid; this data is hence not shown.

On the other hand, temporal modulations represented in
the filter bank were found to be encoded in the ECoG data: As
Figure 3 depicts, several electrodes show multiple statistically
significant differences in neural response. In Patient A, the
neighboring Electrodes 40 and 45 (’E40’ and ’E45’), which are
associated with the belt regions of the auditory cortex, show
especially characteristic responses identified by the multiple
highly significant Student’s t-tests. Other electrodes respond
characteristically to one filter group in particular, including
one electrode (E76, Patient A) positioned in the anterior STG
(see inset in Fig. 3(a)). Interestingly, this electrode responds
strongest to higher temporal modulations in the speech signal.
In contrast, other electrodes positioned in the middle STG (e.g.
E40 in Patient A, E48 in Patient B), are more responsive to
lower modulation frequencies. These are generally ascribed to
the word and syllable rates of continuous speech and are very
important for both human and automatic speech recognition
[26].
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Figure 3: Z-scored activations for electrodes over the temporal
lobe of both patients show specificity for temporal modulations
of the speech signal. Inset figures show locations of electrodes
with significant differences.

3.2. Sensitivity to spectro-temporal patterns in the tempo-
ral lobe

The predominant neighboring Electrodes E40 and E45 of Pa-
tient A also show characteristic activations to true spectro-
temporal filters grouped according to Fig. 1. Figure 4 depicts
the sets of responses to the four different groups in E40 and
E44 in Patient A. The effects in E40 can be observed for long
intervals after the onsets of the filters in this electrode and also
in E41 for an interval of 140-180 ms post-stimulus; both elec-
trodes are located at the posterior STG. It is noteworthy that
E41 did not show significant specificity towards purely tempo-
ral modulations, thereby excluding the possibility of temporal
modulations being captured by the ST filter groups. This is
in line with earlier findings that showed individual and distinct
trends for each filter, which can be explained by the choice of
filters to minimize covariance between these. Significant differ-
ences of all other groups to the Group ST4, with strong group-
specific responses in almost all time frames post-stimulus are
also observed in E44. These differences can also be observed
in the interval of 170-200 ms after the stimulus in E45. Elec-
trode 44 thus shows an increased specificity towards spectro-
temporal modulations in comparison to purely temporal mod-
ulations, whereas E45 is found to respond less specifically (cf.
Fig. 3).

In Patient B, specific responses are mainly focused in one
electrode (E52) located over the medial STG with similar re-
sponse patterns, allowing for a closer inspection of the tempo-
ral evolution of the neural response (see Figure 5). E48 shows
similar but attenuated specificity also in later time frames of the
observed window. In comparison to the encoding times gener-
ally assumed in for auditory processing of around 100 ms for
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Figure 4: Average high gamma activity response to spectro-
temporal filters from the Gabor filter bank in Patient A. Signif-
icant differences were found in electrode 40 (E40) and E44. A
time delay between stimulus and response of 150 ms was cho-
sen for this figure. However, stable significant selectivity is ob-
served in a larger time window as shown in the next figure.

cortical areas these evolve far later in the time window. A pos-
sible explanation that has to be confirmed in future research is a
decelerated encoding of ST features.

4. Discussion
The placement of electrode grids is determined by the medical
treatment, hence it is not guaranteed that cortical areas asso-
ciated with speech perception (see [27, 17, 18, 20, 21]) are
covered in ECoG experiments. Since significant differences
in encoding of spectral modulations was shown earlier in the
literature, we assume that a different coverage might have
resulted in differences between spectral filters (which was
not found for the current electrode placement). However,
significant differences in z-scored high-frequency band power
were found for different modulations, indicating that the
corresponding electrodes cover cortical tissue that encodes the
specific characteristic of the speech signal.
However, temporal modulations which are important for speech
perception were especially well-represented and showed highly
discriminable responses. Further, several electrodes were
selective to groups of spectro-temporal filters, especially for
Groups ST1 and ST4. ST1 covers relatively slow changes of
the time-frequency representation which relates to the coarse
structure of speech and also to vowel transients. Group ST4
covers higher modulation frequencies and hence produces high
activations for fine-grained spectro-temporal detail, such as
modulations of the fundamental frequency.

In similar research, localized areas tuned to specific modu-
lations in the spectrograms of speech signals as well as onset-
sensitive areas in the posterior STG were found using spectro-
temporal receptive fields (STRF) [19]. The authors reported an
encoding of temporal modulations in the auditory cortex. In
this study, electrodes found to be specific to temporal modula-
tions are correspondingly placed over the middle and posterior
part of the STG, but for Patient A we also found feature-specific
activations the anterior STG. In contrast to [19], electrodes spe-
cific to spectro-temporal patterns are also found to be located in
the middle and the posterior part of the STG close to the belt ar-
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Figure 5: Temporal evolution of neural response in E52 of Pa-
tient B to grouped true spectro-temporal filters show character-
istic activity especially for the interval of 120 to 180 ms.

eas. In future research, the differences between the STRF-based
approach and regularized Gabor filterbank approach will be ex-
plored to explain if these differences arise from differences in
filter properties, electrode placement, or other factors.

5. Summary and conclusion
ECoG data of two patients implanted with low-density electrode
grids was analyzed with respect to the onsets of speech features
borrowed from automatic speech recognition (ASR): Speech
was converted to spectro-temporal features extracted with a Ga-
bor filter bank, which represent physical-acoustic properties of
speech, i.e., spectral, temporal, and spectro-temporal modula-
tions. We analyzed the relation of filter groups to ECoG data by
using a high filter activation as a trigger and compared the cor-
responding high gamma ECoG data of these segments. While
our data showed no specific selectivity for spectral modulations,
we found significant differences between purely temporal and
spectro-temporal filter categories in the middle and posterior re-
gions of the superior temporal gyrus. Conclusively it can be said
that ASR-motivated features selected for this analysis allow for
an assessment of neural data derived from low-density electrode
grids. On this basis, further experiments with other features mo-
tivated by machine learning seem feasible and could further the
understanding of encoding mechanisms in the human cortex.
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