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Abstract
Native language identification from acoustic signals of L2
speakers can be useful in a range of applications such as in-
forming automatic speech recognition (ASR), speaker recogni-
tion, and speech biometrics. In this paper we follow a multi-
stream and multi-rate approach, for native language identifica-
tion, in feature extraction, classification, and fusion. On the fea-
ture front we employ acoustic features such as MFCC and PLP
features, at different time scales and different transformations;
we evaluate speaker normalization as a feature and as a trans-
form; investigate phonemic confusability and its interplay with
paralinguistic cues at both the frame and phone-level temporal
scales; and automatically extract lexical features; in addition to
baseline features. On the classification side we employ SVM, i-
Vector, DNN and bottleneck features, and maximum-likelihood
models. Finally we employ fusion for system combination and
analyze the complementarity of the individual systems. Our
proposed system significantly outperforms the baseline system
on both development and test sets.
Index Terms: language nativity detection, i-vectors, VTLN,
Phoneme-level prosodic features, phonemic log-likelihood fea-
tures, Deep neural network, bottleneck features, L1, fMLLR

1. Introduction
Speech signals, in addition to the explicitly expressed lexical
content, contain a diverse range of information about speakers
such as age, emotions, speaker identity, environment character-
istics, language background of the speaker etc.. Capturing and
describing such diverse information enables adaptation and im-
proved performance of speech processing systems. One of these
important characteristics to capture is the native language of the
speaker.

Identification of the native language (L1) of a non-native
English speaker from English (L2) speech is a challenging re-
search problem. Knowledge of the native language can aid Au-
tomatic Speech Recognition systems through specifically tuned
models, can provide culturally aware machine-human interfaces
and can provide cues towards more accurate speaker recog-
nition, speech biometrics and speech forensics by effectively
modeling the phonotactic variability of speakers across various
languages.

There has been relatively less research in the area of native
language detection. Most of the research involves study with 2
to 4 way classification. In [1], a support vector machine (SVM)
was used to classify 8 native languages using ASR based fea-
tures under a universal background model (UBM) framework.
Shriberg et al. [2] used multiple approaches based on lexical
systems by using phone and word N-gram language models
(LM) to show that the word based N-gram LM was more ef-
fective than a phone based one. Several studies have shown

prosodic information like energy, duration, pitch, and formant
based functionals to be effective features [2–4]. The native lan-
guage identification task was found to be particularly difficult
for spontaneous speech [3]. On the acoustic front, Gaussian
Mixture Models (GMM) have been used to train a model spe-
cific to different accents [5]. For training such GMMs front-
end acoustic features in the form of Cepstral based features,
like Perceptual Linear Prediction (PLP) [5] and Mel Frequency
Cepstral Coefficients (MFCC) [3], and second and third for-
mant features [4], have been employed. Different training tech-
niques like Maximum Mutual Information (MMI) [5] and Min-
imum Phone Error (MPE) [1] were found to be useful. Stochas-
tic trajectory models (STM) based on phonemes were success-
fully applied to capture the dynamics of accents specific to each
phones [3]. An in-depth analysis of temporal characteristics of
accents were performed in [6], showing significant differences
between foreign accented English, hinting at the potential of the
duration based features towards accent classification.

In this paper, we use acoustic features, MFCC and PLP of
different time scales, in an i-Vector framework with probabilis-
tic linear discriminant analysis (PLDA) to model the acoustic
information. Deep neural networks (DNN) are used to derive
bottleneck features, which in turn are used to train the i-vectors
to boost the discriminative power of the frame level acous-
tic features. We introduce a Pronounciation-Projection (L1-
ProP) feature by projecting acoustics in the English-language
pronounciation space via an ASR, that can capture L1-specific
phonemic mismatch. We also propose novel phoneme-level
features in terms of Phonemic Confusion (PC) and Phoneme
Specific Prosodic Features (PSPS) which are designed to cap-
ture the confusability and the short term prosody-dynamics on
phone level. On the lexical front, the grammatical variations
on word level persistent in specific languages are exploited. Fi-
nally, the introduced features are fused together along with the
baseline features for classification. The experimental results are
presented on the ETS corpus of non-native spoken English com-
prising of 11 distinct L1 speakers, as a part of Interspeech Na-
tive Language Sub-Challenge [7].

The rest of the paper is organized as follows. First, the
database and baseline system are briefly described in Section 2.
We then describe the features employed in Section 3 and the
classification algorithms in Section 4. We provide a brief de-
scription of our fusion method in Section 5 before we proceed
to analysis of our results in Section 6. We conclude and provide
future directions in Section 7.

2. Database and Baseline System
2.1. Database
The Educational Testing Service (ETS) corpora used in this
work is built on the spontaneous speech of non-native English
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speakers taking the TOEFL IBT exam. The corpora consists of
5,132 speakers from 11 L1 backgrounds with approximately 64
hours of speech (45s per speaker). The 11 L1 categories were
Arabic, Chinese, French, German, Hindi, Italian, Japanese, Ko-
rean, Spanish, Telugu and Turkish. Additional details of divi-
sion of data, speakers and L1 classes, for training, development
and testing corpora is available in [7].
2.2. Baseline System
The baseline for our system is trained using utterance level
statistics of the acoustics such as spectral (e.g., formants), cep-
stral (e.g., MFCC, RASTA), tonal (e.g., CHROMA, CENS) and
voice quality (e.g., jitter, shimmer), for a total of 6373 dimen-
sions, extracted using OpenSMILE [8]. The features are used
to train a support vector machine (SVM) to classify among the
11 L1 categories and details can be found in [7].

3. Features
In our proposed system, we use multirate information
from acoustic, prosodic, phoneme-confusability, phoneme-level
prosodic, and lexical streams to train complementary multi-
ple expert systems. The features were tailored to capture (i)
discriminative information between the 11 non-native L1 lan-
guage (ii) discriminative variability with respect to native En-
glish speaking patterns.
3.1. Frame-level Features
On the acoustic front-end, we use MFCC, PLP and log power-
spectral features due to their success in prior work [3, 5]. We
use multiple streams of acoustic features to capture variabil-
ity in terms of multiple temporal (25ms to 150ms frame size)
and spectral resolutions (23-69 mel-filterbanks with 13 to 39
MFCC). The delta and delta-delta features were computed and
mean normalized.
VTLN: To reduce inter-speaker variability we can employ
speaker normalization techniques such as Vocal Tract Length
Normalization (VTLN) [9], Maximum Likelihood Linear Re-
gression (MLLR) [10], and Speaker Adaptive Training tech-
niques (SAT) [11]. In our work we employ linear-VTLN via
an affine transformation to approximate the non-linear warping
of the frequency axis similarly to the method in [12]. It is un-
clear however if such normalization also removes L1 specific
features, something we intend to investigate.
3.2. Bottleneck features
Bottleneck features were shown to be useful for speaker recog-
nition [13] and language identification [14] task. We gener-
ate bottleneck features via a DNN with a 23 frame context in-
put of 257-dimensional log-spectra that mirror the human au-
ditory system [15]. The DNN thus has a 5911 dimensional in-
put and 3 hidden layers with 2000, 50 and 500 neurons.The
50-dimensional bottleneck features along with their delta and
delta-delta features are mean normalized and used to train the
total variability matrix of the i-vector framework.
3.3. Phoneme-level Features
Past studies have demonstrated the influence of L1 back-
grounds on L2 speakers’ pronunciation of English vowels and
consonants [16–19]. Different backgrounds are associated
with specific perceptual errors in recognition between differ-
ent phonemes. For instance, strong confusion has been ob-
served between Japanese speakers’ pronunciation of /l/ and
/r/ phonemes [20] and between /n/ and /l/ for Chinese
speakers [21]. Wiltshire et al observed Gujarati and Tamil influ-
ences on pitch accents and slopes, similar to those that Arslan et
al observed with Mandarin and German [6,22]. Phoneme dura-
tions have been shown to be a prominent feature characterizing

accents and dialects [6] as well.
Such traits are likely complementary to the frame-level

acoustic features. Capturing such traits involves a projection
of the speaker characteristics on the English-language space
and the analysis of this projection. This can be practically
implemented as the projection to the likelihood space of each
phoneme via a speech recognizer. We can also employ this pro-
jection in several ways:
3.3.1. L1-Pronounciation Projection (L1-ProP)
The L1-ProP features are designed to capture the pronunciation
variability between the L1 English speakers and the L2 speak-
ers. Since different languages employ a different phonetic in-
ventory, we hypothesize that this will create specific responses
in the phonemic projection of L2 English speech on the native
English speech space. To obtain a compact projection we used
a mono-phone phoneme recognizer trained on native English
speakers [23] using the Kaldi toolkit [24]. The frame level log-
likelihood score is obtained from the ASR monophone model
using the following criterion:

LLp = max
s∈Sp

log(P (f |s)) ∀p ∈ P (1)

where p is a phone from set of phones, P , s is the state from the
set of states, Sp, specific to phoneme p, f is the frame. For each
frame, we get a 41 dimensional vector corresponding to log-
likelihoods for 39 non-silence and 2 silence phones. In short
we select the best match per phoneme for all the various states
belonging to that phoneme. We further explored projection on
a range of different languages.
3.3.2. Phonemic Confusion
To obtain the phoneme confusion features, we used the
phoneme likelihoods described in Sec. 3.3.1. We want to inves-
tigate phoneme confusion so we generated a pairwise-confusion
matrix from the cross-product of the 39 dimensional confusion
log likelihoods. We then vectorize the lower-triangular ele-
ments and obtain the average confusion vector per phoneme
from its instances as determined by the ASR. Finally, we aver-
age this vector over all phonemes to obtain a 780-dimensional
feature per file.
3.3.3. Phoneme Specific Prosodic Features (PSPS)
Prosodic variability has been shown to be useful in native lan-
guage identification. The baseline features employ prosody
with success. We also hypothesize that phone-specific prosodic
variability can provide useful information. Based on phoneme
alignments obtained by the ASR above we compute the mean,
standard deviation, median, min, max and range of phoneme
duration, short-time energy and pitch (only for voiced). We then
average over each phoneme type (i.e., over all “AA” phonemes,
over all “B” phonemes etc.). This results in a 1062-length
feature vector over all phonemes (30 features × 30 voiced
phonemes, 18 × 9 unvoiced). In case a phoneme is not ob-
served in a session, we impute its features using the global av-
erages from other train sessions where it was observed.
3.4. Lexical features
We believe that lexical channel can capture 2 types of informa-
tion: 1. the style of expression and language use errors will
vary according to the native language of the speaker; and 2. an
ASR transcript will contain consistent errors based on consis-
tent mispronounciations resulting from L1 specific phonemic
confusability. Given the limited lexical data and the error as-
sociated with recognizing L2 speech we decide to employ the
1000 n-best list of each utterance of each file as our lexical rep-
resentation of each speaker. Decoding was done using a DNN-
ASR system trained on the Fisher corpus.
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3.5. fMLLR Transform based Features
Feature-space Constrained Maximum Likelihood Linear Re-
gression (fMLLR) is a linear transformation used for speaker
and environment adaptation in modern ASRs such that it max-
imizes the observation data likelihood given the model [11].
While it removes a lot of this variability it may also remove na-
tive language specific information, we thus decide to investigate
whether the 39×40 dimensional fMLLR transform conveys na-
tive language information and employ it as a feature.

4. Classification Techniques
4.1. i-Vector
Recently, i-vector modeling was introduced in application to the
task of speaker verification [25]. Its excellent state-of-the-art
performance gained significant research interest among the sig-
nal processing community. The total variability modeling of
i-vectors have since been applied to various tasks like language
recognition [26], speaker recognition [27], speaker age recogni-
tion [28,29]. For our work we use total variability i-vector mod-
eling. We train a full covariance GMM-UBM on the ETS Cor-
pus training dataset. The UBM was trained using 2048 gaussian
mixtures. The zeroth and the first order baum welch statistics
are computed from the training data and the total variability ma-
trix is estimated using Expectation-Maximization. Finally, we
extract mean and length normalized i-vectors.
4.2. PLDA
For scoring, we use probabilistic linear discriminant analysis
(PLDA), due to its state-of-the-art results in speaker recognition
domain [27]. Given a pair of i-vectors, PLDA evaluates the ratio
of probability that the two i-vectors belong to the same native
background to the probability that the two i-vectors are from
different native backgrounds [30]. The log-likelihood scores
obtained after PLDA scoring are used for classification.
4.3. SVM based phoneme-level feature classification
We implemented the phonemic confusability and prosodic fea-
tures as described in Secs. 3.3.2 and 3.3.3. The session-level
features were trained and tested using the same parameters as
the baseline system using PolyKernel SVM and Weka [31].
4.4. Maximum Likelihood Lexical Classification
Given the limited lexical data we decided to use a simple Maxi-
mum Likelihood (ML) classification framework. We considered
alternatives, such as a word2vec front end, however the em-
bedings may preserve the lexical similarity but not necessarily
the actual word biases of L2 speakers that we desire to capture.
Models were smoothed with background data to ensure robust-
ness and to boost the importance of domain-salient words. For
transcript we used the 1000 best of each utterance in the test file
similarly to [32].

5. Fusion
Both feature and score level fusion techniques were explored in
this work. Feature level fusion was used to emphasize the com-
plementarity of the presented features to the baseline. Whereas,
the score level fusion was employed for multiple combinations
of all the presented modalities to improve performance.
Feature-level fusion: Features from different standalone sys-
tems were evaluated by concatenating them to the baseline fea-
tures and training a SVM directly. Fusion on i-vector level was
also tried by applying linear discriminant analysis (LDA) on in-
dividual systems first and then on the fused i-vector features.
The fused i-vectors are used to train the PLDA system for ob-
taining the log-likelihood scores.
Score-level fusion: For score-level fusion, logistic regression is
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Figure 1: Effect of VTLN on recall rates of languages

performed over the log-likelihood scores obtained from multi-
ple systems using the Bosaris toolkit [33]. For i-vector based
systems, the log-likelihood scores are directly obtained from
the PLDA scoring. Whereas, for the SVM/DNN and lexical
classifiers, the posteriors and perplexity are converted to log-
likelihoods respectively. For training the fusion systems, we
perform k-fold cross-validation on training data to obtain new
set of perturbed log-likelihoods, which is more representative
of the errors the i-vector framework makes on testing data.

6. Experimental results & Discussions
We present the results for individual systems first, and then fi-
nally we evaluate the fusion performance of multiple systems.
6.1. Standalone system performance
Table 1 gives the summary of performance for different stan-
dalone systems.
Acoustic i-vector modeling: We observe typical PLP and
MFCC based acoustic features to be reliable giving the best
individual-system results. We find that PLP outperforms the
MFCC features by approximately 2% absolute both in terms of
Accuracy and UAR.
Effect of VTLN: Figure 1 demonstrates the effect of VTLN on
MFCC features. The recall of 11 different languages are plot-
ted for raw MFCCs and VTLN-MFCCs. We see that the VTLN
gives consistent improvement to most of the languages except
Japanese and Telugu. We obtain a significant increase of abso-
lute 19% recall for Spanish. Overall, we find VTLN to be useful
providing 3.6% absolute increase in accuracy and recall rates.
L1-ProP and i-vector: We find that using VTLN-MFCCs to ex-
tract the log-likelihood features does not significantly improve
the performance. Further, gaussianization of features and PCA
dimension reduction (23 dimensions) were found to be useful
providing a boost of 9% absolute. Overall, the phoneme con-
fusability log-likelihood features prove to be less reliable com-
pared to the acoustically trained i-vectors. L1-ProP features
on other foreign languages like Spanish, Hindi, Telugu, Ara-
bic, French and German were also experimented with and were
seen to give similar performance to the Spanish. We retain the
system for fusion to extract complementary information.
Bottleneck features: We observe that the bottleneck features
never approach the performance of other acoustic features
(MFCC or PLP). Since they are based on the same modality
as MFCC and PLP they also do not provide complementary in-
formation thus we do not pursue these further.
Phoneme level features: While both the prosodic and con-
fusability features fail to beat the baseline performance, the
prosodic features are observed to provide complementarity to
the baseline. Since they also perform similar to the baseline
despite using elementary statistics, this supports the need for
better phoneme-level modeling.
Lexical features: Lexical features provide performance similar
to the baseline and given the different modality we expect them
to provide complementary information.
fMLLR features: We see from the result that the raw fMLLR
transforms inherit certain L1 characteristics and could be used
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Features	➙	Classifier Accuracy UAR
45s Baseline 45.00% 45.10%
25ms MFCC	➙	iVector	➙	PLDA 70.90% 70.90%
25ms MFCC-VTLN	➙	iVector	➙	PLDA 74.20% 74.20%
25ms PLP	➙	iVector	➙	PLDA 72.30% 72.50%
25ms PLP-VTLN	➙	iVector	➙	PLDA 76.40% 76.40%
25ms Bottleneck	features	on	log	power	spectrogram	➙	iVector	➙	PLDA 36.40% 36.70%
45s fMLLR	➙	SVM 42.30% 42.70%
Word Lexical	➙	Maximum	Likelihood	w/	smoothing 44.60% 41.00%
25ms L1-ProP	➙	iVector	➙	PLDA	(English	ASR) 60.50% 60.70%
25ms L1-ProP	➙	Gaussianiazation	➙	PCA	iVector	➙	PLDA	(English	ASR) 69.60% 69.80%
25ms L1-ProP	➙	Gaussianiazation	➙	PCA	iVector	➙	PLDA	(Spanish	ASR) 66.00% 66.30%
25ms L1-ProP	+	VTLN	➙	iVector	➙	PLDA 60.90% 61.30%
~80ms Phone	Confusability	Distribution	➙	SVM 25.50% 25.80%
~80ms Phoneme	Specific	Prosodic	Signature	(PSPS)	➙	SVM 40.70% 41.10%

Feature	level	fusion Accuracy UAR
25ms Bottleneck	+	MFCC-VTLN	➙	iVector	➙	PLDA 46.40% 46.80%

Baseline	+	Phone	Confusability	Distribution		➙	SVM	(English	ASR) 44.40% 44.50%
Baseline	+	Phoneme	Specific	Prosodic	Signature	➙	SVM 51.50% 51.70%
Score	level	Fusion	via	Logistic	Regression Accuracy UAR
Baseline	+	(Bottleneck	&	MFCC-VTLN)	 48.20% 48.60%
Baseline	+	fMLLR 48.10% 48.30%
Baseline	+	Lexical 52.10% 52.10%
Baseline	+	Lexical	+	L1-ProP	(English	ASR) 66.50% 66.60%
Baseline	+	Lexical	+	MFCC-VTLN 76.90% 77.00%
Baseline	+	Lexical	+	PLP-VTLN 77.80% 77.90%
Baseline	+	Lexical	+	PLP-VTLN	+	MFCC-VTLN	+	L1-ProP-VTLN	(English	ASR) 78.50% 78.60%
					+	PSPS 64.30% 65.40%
					+	Phone	Confusion 74.70% 74.90%
					+	PSPS	+	Phone	Confusion 74.90% 75.10%
					+	fMLLR 78.10% 78.20%
Leave	One	Out	(From	best	system)		via	Logistic	Regression
Baseline	+	Lexical	+	PLP-VTLN	+	MFCC-VTLN	+	L1-ProP-VTLN 78.50% 78.60%
					-	MFCC-VTLN 76.80% 76.90%
					-	PLP-VTLN 75.60% 75.70%
					-	Baseline 75.10% 75.30%
					-	Lexical 76.70% 76.80%

Results	on	Test
MFCC-VTLN	+	PLP-VTLN	+	Baseline	+	Lexical	(Submission	3) 79.93% 80.13%

Results	on	Development

Table 1: Results of the various systems as described in text.

as a potential feature for L1 identification. It was also found to
provide some complementarity to the baseline features.
6.2. Fusion Performance
Feature-level fusion: We attempted feature-level fusion for our
lowest-performing features to increase performance. We can
see from Table 1 that all three improve marginally above base-
line, but not significantly so.
Score-level fusion: Analyzing the performance of multiple
score level fusion combinations for i-vectors, on the acoustic
front, we find that PLP and MFCC exhibit acoustic complemen-
tarity. Fusion of acoustic features with the baseline and lexical
systems provide further improvements. Even-though the L1-
ProP i-vector system doesn’t provide noticeable increase in per-
formance when fused with acoustic features, we see improve-
ments when used along with the lexical and baseline features.
However, we observe that the Phonemic Confusability (PC) and
Phoneme Specific Prosodic Signature (PSPS) do not improve
the overall performance of the system. We believe that the noise
in the feature extraction may be responsible for the low perfor-
mance and we intend to investigate further. We also believe that
these features can provide improvements for discriminability of
specific language pairs. The fMLLR features did not affect the
performance of our best system significantly. We believe that
the information captured by fMLLR features is redundant with
the combination of other features.

Our best performing system is a combination of acoustic
(MFCC-PLP), lexical, prosodic (Baseline), and L1-ProP. The
best performing system achieves an Accuracy of 78.5% and
UAR of 78.60% on the development test.

We perform leave-one-out from the best system to analyze
the importance of each feature. We find PLP and Baseline fea-
tures to be significant contributors in terms of complementary
information giving approximately 3% improvements, whereas,
MFCC and Lexical features contribute around 2%. Finally L1-
ProP features improves the overall system by a small margin.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 54 1 5 0 1 4 8 2 2 1 2
CHI 0 62 0 2 0 1 2 6 0 1 0
FRE 4 3 56 3 2 3 1 0 5 1 0
GER 0 0 4 69 0 0 0 0 2 0 0
HIN 0 0 0 0 64 1 0 0 1 16 0
ITA 1 1 2 0 0 59 1 0 2 0 2
JPN 1 1 0 0 0 0 71 2 0 0 0
KOR 2 5 0 1 0 0 12 60 0 0 0
SPA 1 0 4 2 2 8 2 2 54 1 1
TEL 0 0 0 0 19 0 0 0 0 69 0
TUR 7 1 2 1 0 1 1 0 2 0 75

Table 2: Confusion matrix of the best results on test, corre-
sponding to an Accuracy = 79.93% and UAR = 80.13%

Across the modalities, we observe different features provid-
ing discriminability between specific language pairs. In future,
we intend to employ a hierarchical classification method to ex-
ploit such properties.
6.3. Inter-class confusion analysis
Figure 2 shows the confusion matrix obtained for our best per-
forming system on the development set. Italian and Turkey are
the least confused languages and French is the most confused.
The matrix shows inter-language confusions between Hindi -
Telugu and Japanese - Korean languages correlating with de-
mographics between the languages. In our human-analysis, that
included three Indian speakers, we couldn’t separate most of
the confusable development set Hindi and Telugu pairs. Over-
all, comparing with the baseline system, we find the confusion
to be significantly more sparse suggesting not only better per-
formance but also less confusion among language pairs with our
improved system.
6.4. Results on the test
For testing, we used the score level fusion MFCC-VTLN, PLP-
VTLN i-vector system, Baseline and Lexical features to achieve
a performance of 79.93% Accuracy and 80.13% UAR. We be-
lieve that inclusion of other systems and further calibration dur-
ing fusion on per-language level basis rather than global 11
class classification metrics could boost the performance. Due
to time constraints, we were unable to try further combinations
and didn’t incorporate L1-ProP features with Gausianization.

7. Conclusion
In this work, we have addressed a challenging research problem
of detecting the L1 native language from spontaneous speech
on 11 different L1 language categories. We exploit differ-
ent modalities, multiple feature rates, and a range of meth-
ods towards robust classification. Each modality was shown
to improve the performance of the baseline system when fused
with the baseline features, demonstrating the complementarity
of the proposed features. We also showed the effectiveness
of speaker normalization. We successfully demonstrate that
some L1 information exists in the normalization (fMLLR) fea-
ture and could be used as a potential feature for L1 detection.
While the phoneme confusability and phoneme-level prosodic
features did not improve the overall system performance, they
were shown to be effective in improving the baseline. Different
fusion techniques were applied to extract complementary infor-
mation across various modalities.

By analyzing the confusion in the system, we observed in-
herent correlations with the demographics among certain lan-
guages. From an unscientific sampling of human listeners our
system seems to face similar challenges to humans especially
for the highly confusable language pairs. In short, we present
an accurate multimodal, multirate L1 identification system via
a range of feature, classification, and fusion methods.
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mouchel, “Mixture of plda models in i-vector space for gender-
independent speaker recognition.” in INTERSPEECH, 2011, pp.
25–28.

[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[32] P. G. Georgiou, M. P. Black, A. Lammert, B. Baucom, and S. S.
Narayanan, ““That’s aggravating, very aggravating”: Is it possible
to classify behaviors in couple interactions using automatically
derived lexical features?” in Proceedings of Affective Comput-
ing and Intelligent Interaction (ACII), Lecture Notes in Computer
Science, October 2011.
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