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Abstract 
Acoustic differences between the vowels in filled pauses and 
ordinary lexical items such as nouns and verbs were examined 
to know if there was systematic difference of voice-quality. 
Statistical test of material taken from the Corpus of 
Spontaneous Japanese showed that, in most cases, there was 
significant difference of acoustic features like F0, F1, F2, 
intensity, jitter, shimmer, TL, H1-H2, H1-A2, duration, etc. 
between the two classes of vowels. Random forest 
classification of open data sets showed higher than 0.8 F-
values on average. It turned out intensity, F0, F1, jitter, and 
H1-H2 were the most important acoustic features for the 
expected voice-quality difference.  

Index Terms: filled pauses, voice-quality, random forest, 
Corpus of Spontaneous Japanese 

1. Introduction 
The aim of this paper is to show that there is systematic 

difference of voice quality between the vowels in filled pauses 
and ordinary lexical items in spontaneous Japanese.  

Recently, there is growing consensus among researchers 
about the important cognitive roles played by filled pauses (FP 
hereafter) in speech communication. FPs such as English uh
and um, and Japanese eH (prolonged /e/) and anoH, are used 
to transmit various pragmatic information like hesitation, floor 
holding, indication of ongoing message planning and lexical 
search, and so forth [1-4].  

On the other hand, the production mechanism of FP is left 
largely unclarified except for a couple of preliminary studies 
on the F0 shape of FPs in English and Japanese [5, 6].  

The absence of interest in the production aspect of FPs is 
not surprising in a sense, because it is often the case that the 
morphological / phonetic properties of FPs are quite restricted 
compared to ordinary lexical items like nouns and verbs. The 
inventory of FPs is quite small; less than ten in most European 
languages, and less than twenty in a language like Japanese 
whose FP inventory is known to be quite rich.  

Moreover, there is often a restriction about the possible 
phonetic shapes of FPs. In Japanese, for example, FPs are 
either vowels (i.e., /iH/, /eH/, /aH/, /oH/, /uH/, and their short 
vowel counterparts), or cognates of demonstratives like /ano/ 
and /sono/ (both correspond to “that” in English).   

As for prosody, preceding studies on English and Japanese 
showed that the F0 shape of FPs was largely underspecified; it 
can be predicted to a large extent from the intonational 
environment in which they occur [5, 6].   

The presence of strict morphological restriction as well as 
prosodic underspecification give rise to one important question 

about the production of FPs: why can FPs transmit various 
pragmatic messages under such strong restrictions? A 
plausible answer to this question is the contribution of voice 
quality features like phonation types. Recently, the present 
authors tried to show by means of acoustic analysis that there 
was systematic difference between the voice quality of FPs 
and ordinary lexical items (LX hereafter) [7]. In the study, FPs 
and LXs were compared with respect to various acoustic 
features (see below). The results revealed significant 
difference between the FPs and LXs in most features.   

In the present study, the same data as in the previous study 
is reanalyzed with respect to more acoustic features. Moreover, 
a machine learning technique is used to evaluate relative 
importance of acoustic features for the discrimination of FPs 
and LXs. Lastly, the performance of classifier is evaluated by 
means of cross-validation.  

2. Data 
Monologue talks in the X-JToBI [8] annotated part of the 

Corpus of Spontaneous Japanese [9], known as the CSJ-Core, 
was analyzed. The data was spoken by 79 male and 58 female 
speakers. Among the more than 30,000 FPs involved in the 
data, vocalic FP /eH/ and /aH/ (namely, those FPs consisting 
exclusively of monophthong vowels) were analyzed and 
compared to the corresponding LX long vowels.  

As for the LX vowels, only the vowels located in the 
word-initial position like /eHga/ “movie” and /raHmeN/ 
“ramen noodle” were chosen for analysis. Vowels that were 
estimated to have less than ten pitch cycles were omitted from 
the analysis, because jitter and shimmer analyses required the 
duration longer than five pitch cycles. Table 1 shows the 
number of samples analyzed in the current study. Vowels 
whose numbers of samples were less than 50 were omitted 
from the analysis.  

Speaker Vowel FP LX 

Male /aH/ 108 113 
/eH/ 2411 764 

Female /aH/ 40 61 
/eH/ 1049 529 

3. Analysis 

3.1. Acoustic analysis  
Acoustic features analyzed in this study included duration, 

mean-intensity, mean F0, mean first formant frequency (F1), 
mean second formant frequency (F2), mean jitter, mean 

Table 1. Number of samples
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shimmer, mean harmonic to noise ratio (Harm2noise),  mean 
spectral tilt (TL), mean difference of the first two harmonics 
H1-H2), and, mean difference between the first harmonic and 
the level of second formant (H1-A2).  

In the following subsection, some selected results will be 
presented in detail. Due to the limitation of space, the whole 
results will be summarized later in Table 2.  

3.1.1. Duration 

As shown in Figure 1, FP has longer vowel duration than 
LX, both in male and female samples.  

3.1.2. Intensity 

Intensity information was z-normalized using the mean 
and SD of each speaker. As shown in Figure 2, FP has weaker 
intensity values compared to LX.  

3.1.3. F0 

F0 was computed for every 10ms using autocorrelation 
method and averaged over the whole duration of a vowel using 
Praat (Ver. 5.3.76) [10]. Log mean F0 values were z-
transformed for each speaker based upon the all F0 values 
obtained for the speaker. Logarithm (base 10) of F0 values is 
z-transformed for each speaker. As shown in Figure 3, FP has 
lower mean F0 than LX in male speech. On the other hand, 
female speech tends to have slightly higher mean F0 in FP 
than LX.  

3.1.4. F1 and F2 

Formant frequencies were estimated by LPC method 
(number of poles was set to 12), and then z-transformed for 
each speaker. Like F0, logarithm of F1 value is z-transformed 
for each speaker.  

As shown in Figure 4, FP has higher mean F1 value than 
LX in the case of /eH/ in both male and female speech.  

3.1.5. Jitter and shimmer 

Among various definitions of jitter, PPQ5 (five-point 
period perturbation quotient) [11] was computed using the 
voice report function of Praat. As shown in Figure 5, FP has 
higher mean jitter than in LX.  

3.1.6. Spectral tilt, H1-H2, H1-A2 and harmonic to 
noise ratio  

TL, or spectral tilt, was estimated by a cepstrum-based 
method described in [7, 12]. Overall trend of a spectrum was 
approximated by the first cepstrum component, and the 
difference between the estimated amplitudes at 0 and 3000 Hz 
was used as the estimated TL.  

H1-H2 (the difference between the levels of the first and 
second harmonics) and H1-A2 (the difference between the 
levels of the first harmonic and second formant) are also the 
measures of spectral tilt. They are often utilized in the 
literature of phonetics [13]. An open source script of Praat 
developed by Chad Vicenik [14] was used for the computation 
with minimum necessary modifications. As shown in Figure 6, 
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FP has tendency to have higher spectral tilt (H1-H2, in this 
case) than LX.  

Lastly, harmonics to noise ratio is an acoustic measure that 
can be related to voice hoarseness [15]. It was computed using 
the voice report function of Praat.  

3.1.7. Summary of acoustic analyses  

Table 2 summarizes the results of t-tests applied for all 
eleven acoustic features. Significance levels are shown by 
stars, and the observed magnitude relationships between the 
FP and LX samples are indicated by the ‘>’ and ‘<’ marks.  

All features showed statistical significance of some sort in 
at least two columns. Observed magnitude relationships were 
stable in most cases, but there were cases where the 
relationship turned out to be unstable (F0, F2, and 
Harm2noise).  

3.2. Classification by random forest  
Table 2 provides little information about the relative 

importance of acoustic features for the sake of the 
classification of FP and LX vowels. It is impossible to know 
which one of intensity and H1-A2 is more important for the 
classification, for example.  

A machine-learning technique known as random forest 
was utilized to evaluate the relative importance of acoustic 
features [16]. Four vowel classes, i.e. male /eH/, male /aH/, 
female /eH/, and female /aH/, were analyzed separately in this 
section.  

In each vowel class, a classification tree for the FP-LX 
distinction was constructed using the eleven acoustic features 
listed in Table 2 as the predictor variables.  

In order to set the baseline of classification to 0.5 precisely, 
the same number of samples were randomly extracted from the 
data of Table 1. As for male /eH/, male /aH/, and female /eH/, 
100 vowels were extracted for each of FP and LX categories. 
As for female /aH/, 30 vowels were extracted for FP and LX 
categories.  

The randomForest package (4.6-12) of the R language 
(3.1.3) was used for the analysis. Parameter tuning was done 
by the tuneRF command of the package.  

Table 3 summarizes the results. The first eleven rows of 
the table show the relative importance of acoustic features. 
The number in each column is called mean decrease in Gini 
index (MDG) and shows the relative importance of the feature 
for the classification of the FP and LX vowels.  The larger the 
MDG is, the greater the contribution of the feature for the 
classification is. Shaded cells stand for the top-five acoustic 
features in each vowel class.  

The last 4 rows of the table, on the other hand, show the 
accuracy, precision, recall, and F-measure (the harmonic mean 
of precision and recall) of the classification. Precision and 
recall are those of FP rather than LX, here, and in the rest of 
this paper.  

It was the features of duration and intensity that 
contributed the most to the classification, and, the features like 
F0, F1, Jitter, and H1-A2 made secondary contributions 
depending on the vowel class. Judging from the F-values, the 
performance of the classification was fairly good.   

There is, however, an important phonetic question:  
duration is not usually regarded to be a constituent of voice-
quality features of vowels in traditional phonetic [17]. To 
answer this question, random forest analyses that excluded 
duration from the predictor variables were conducted.  

As summarized in Table 4, the results were very similar to 
the ones reported in Table 3. The only notable exception was 
the considerably lowered classification performance in the 
case of female /aH/.  

3.3. A unified model  
So far, four vowel classes were analyzed separately using 

different classifier models. In this section, a unified model that 
covers both male and female speakers, and /aH/ and /eH/ 
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altogether is proposed. For this purpose, data of all vowel 
classes were merged into one, and two new predictor variables, 
viz., speaker sex (male and female) and vowel category (/a/ 
and /e/), were added to the existing predictor variables of 
acoustic features. The procedure of random forest analysis was 
the same as in the previous analyses. 

The unified model showed slightly better performance 
than in the separate analyses. Accuracy, precision, recall, and 
the F-value of the unified model were 0.89, 0.87, 0.90, and 
0.88 respectively. The top-five features and the corresponding 
MDG values were duration (114.23), intensity (68.24), F0 
(27.68), F1 (19.73), and, Jitter (16.52). The two new variables 
did not make any noticeable contributions, the MDG for sex 
and vowel category being 1.10 and 0.85 respectively.  

Exclusion of duration feature from the predictor variables 
did not change the result considerably. Accuracy, precision, 
recall, and the F-value of the unified model without duration 
feature were 0.80, 0.82, 0.79, and 0.81 respectively; the top-
five features included intensity (MDG 84.88), F0 (44.19), F1 
(32.47), Jitter (24.46), and H1-H2 (24.40), whereas the 
contributions of sex (3.64) and vowel category (1.85) stayed 
nearly negligible.  

3.4. Cross-validation  
So far, the performance of random forest classifiers was 

evaluated by using so-called closed data, i.e. the case where 
the same data set was utilized both for training and evaluation 
of a classifier. As is well known, classifiers constructed in this 
way tend to run the risk of overlearning or overfitting to the 
training data.  

To avoid the risk, ten-fold cross-validation was conducted 
using the data set that we used in 3.3 (i.e. the data for unified 
model). Cross-validation was conducted in the following 
manner. First, 90% of the new data set (i.e. 594 samples) was 
extracted randomly as a training data, and the remaining 10% 
(i.e. 66 samples) was used as a test data (or open data). This 
sampling process was repeated ten times so that there were ten 
independent pairs of training and test data sets. With respect to 
these test data sets, the chance level of FP classification 
differed from set to set, but on average the chance level is 
about 0.50.  

Second, a random forest classifier, which was a unified 
model, covering both male and female samples and both /aH/ 
and /eH/ samples, was constructed based upon a training data. 
Then the classifier was applied for the task of FP/LX 
classification of corresponding test set. The performance of 
classifier was evaluated by means of accuracy, precision, 
recall, and the f-measure as in previous analyses. This process 
was repeated ten times for all pairs of training and test data 
sets.  

Moreover, the whole process described above was 
repeated twice. In the first round, data including the feature of 
duration was utilized, and in the second turn, data excluding 
the duration feature was utilized.  

Variation of accuracy, precision, recall, and f-measure are 
shown in Figures 7 (including the duration feature) and 8 
(excluding the feature).   

In Figure 7, performance of classifies was as high as 0.89 
on average in terms of the f-measure. Exclusion of duration 
feature lowered the performance to some extent, but the 
performance shown in Figure 8 remained still fairly high; the 
f-measures were 0.81 on averages.   

As for the relative importance of acoustic features, the top 
five features included duration (118.5), intensity (56.0), F0 

(23.5), F1 (15.7), and jitter (15.1) in the case of data including 
duration (The parenthesized digits are mean MDG).  

In the case of data excluding duration, the top five features 
included intensity (85.3), F0 (36.9), F1 (30.4), jitter (23.7), and 
H1-H2 (21.0).  

4. Conclusion 
Classification of FP and LX vowels by means of random 

forest technique unveiled relative contribution of various 
acoustic features to the classification task, which was left 
unrevealed in the previous studies [7, 12].  

Cross-validation of random forest classifiers revealed high 
performance in the classification of open data sets. Although 
the feature of duration contributed greatly in all models, 
analysis of data excluding the duration feature also showed 
high classification performance.  

This fact suggests strongly the conclusion that there is 
systematic difference in voice-quality between the vowels in 
FP and LX. Acoustic features like intensity, F0, F1, jitter, and 
H1-H2 seem to be the most relevant for the difference. 
Compared to LX vowels FP vowels seem to be characterized 
by lower intensity and F0, higher F1, larger jitter, and, larger 
H1-H2 as shown in Figures 2-6.   

Further clarification of the phonetic details of voice-
quality difference should be the theme of future investigation.  
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Figure 7. Result of cross-validation (Including duration)

Figure 8. Result of cross-validation (Excluding duration)
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