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Abstract
Combining disparate automatic speech recognition systems has
long been an important strategy to improve recognition accu-
racy. Typically, each system requires a separate decoder; final
results are derived by combining hypotheses from multiple lat-
tices, necessitating multiple passes of decoding. We propose
a novel Weighted Finite State Transducer (WFST) framework
for integrating disparate systems. Our framework is different
from the current popular system combination techniques in that
the combination is done in one-pass decoding and allows the
flexibility to combine systems at different levels of the decod-
ing pipeline. Initial experiments with the framework achieved
comparable performance as MBR-based combination which is
reported to outperform ROVER and Confusion Network Com-
bination (CNC). In this paper, we describe our methodology
and present pilot study results for combining systems that use
different sets of acoustic models, 1) gender-dependent GMM
models, 2) MFCC and PLP features with GMM models, 3)
MFCC, PLP and Filter Bank features with DNN models, and 4)
SNR-specific DNN acoustic models. For each experiment, we
also compared the computation time of the combined systems
with their corresponding baseline systems. Our results show en-
couraging benefits of using the proposed framework to improve
recognition performance while reducing computation time.
Index Terms: Acoustic Model Combination, WFST, Semirings

1. Introduction
Research on automatic speech recognition (ASR) has witnessed
substantial development over the past few decades. For many
years, the use of Hidden Markov Models (HMMs) in combina-
tion with Gaussian Mixture Models (GMMs) was the dominant
method for acoustic modeling, which achieved considerable im-
provement in recognition accuracy. Recently, the introduction
of Deep Neural Networks (DNNS) has further improved the
recognition performance.

In a typical ASR system, multiple stages are often em-
ployed. Each stage uses the output of the previous stage to
continue processing, thus forming a sequential ASR pipeline.
At the end of the pipeline is the decoding process. During this
stage, n-best results are kept and the pruning threshold is care-
fully chosen. Models that are used can be represented as graphs,
which makes weighted finite-state transducers (WFST) an effi-
cient representation of these models. WFST-based decoders [1]
admit to a convenient compositional structure, where informa-
tion about the acoustic, context, pronunciation, and language
models can be integrated. Operations such as composition, de-
terminization and minimization enable WFST to manipulate the
intermediate graphs for optimal results.

At the heart of the WFST is the semiring that governs how
the probabilistic scores are propagated through combined net-
work. The traditional WFST decoder implementing the Viterbi
algorithm utilizes the tropical semiring, which operates in neg-
ative log space to find the best decoding path that minimizes the
cost (or, conversely, finds the most probable utterance). In re-
cent years, different types of semirings have been proposed for
various purposes. For example, the lexicographic semiring by
Shafran et al. [2] is used for determinizing tagged word lattices.
Also, van Dalen et al. [3] report the use of expectation semiring
to efficiently extract features.

In ASR research, system combination has been a focused
area of investigation. Different approaches have been proposed
to combine systems to utilize the advantages of each system for
better performance. Representative of these are ROVER [4],
Confusion Network Combination (CNC) [5], and Multi-Stream
Combination [6, 7, 8, 9]. Recently, the Minimum Bayes Risk
(MBR) combination method proposed by [10] is reported to
outperform the more traditional ROVER and CNC. However,
most of these system combination techniques perform multi-
pass decoding, which makes the decoding process more com-
plex and time consuming.

In this paper, we propose a WFST framework that extends
the traditional semiring into vector semirings, which permit
combination of multiple acoustic models in the decoding phase
to achieve better single-pass recognition performance. In Sec-
tion 2, we introduce the vector semiring and decoding graph
generation process. In Section 3, we describe the pilot exper-
iments conducted. We combined GMM-based acoustic mod-
els based on two genders, MFCC and PLP features with GMM
models, as well as MFCC, PLP and Filter Bank features with
DNN models. We also explored the possibility of combining
models for different noise environments. Our results show per-
formance comparable to the MBR-based framework [10], de-
spite combining on the uttterance, rather than word, level. For
each experiment, we also assessed the ability of the combined
systems in reducing computation time. In the final section, we
discuss the results and future work.

2. Methods
One popular way to combine different systems is the ROVER
technique [4]. This method generates a Word Transition Net-
work (WTN) from a set of hypotheses of different systems and
then uses majority voting to produce a single recognition hy-
pothesis. Other approaches such as Confustion Network Com-
bination (CNC) [11] and Lattice Combination [12] also rely
on the generation of word-level lattices or networks which are
products of the decoders. These approaches have achieved
improvement in ASR and keyword search areas. In addition,
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Log vector semiring Tropical vector semiring
Set: Rn ∪ ±∞ Rn ∪ ±∞

(a1, . . . , an)⊕ (b1, . . . bn) (a1 ⊕log b1, . . . , an ⊕log bn)

{
(a1, . . . , an), ifmin(a1, . . . , an) ≤ min(b1, . . . , bn)
(b1, . . . , bn), ifmin(a1, . . . , an) > min(b1, . . . , bn)

(a1, . . . , an)⊗ (b1, . . . bn) (a1 + b1, . . . , an + bn) (a1 + b1, . . . , an + bn)
0 (+∞, . . . ,+∞) (+∞, . . . ,+∞)
1 (0, . . . , 0) (0, . . . , 0)

Figure 1: Definition of vector semirings for both log and tropical domains.

multi-stream techniques [6, 7, 8, 9] have been used to combine
acoustic scores from different models at the frame level. Dif-
ferent techniques can be employed to combine acoustic scores,
such as taking maximum or average or using MLP [13]. Joint
decoding, another approach of combining systems, tries to in-
corporate different forms of an acoustic model into the decoding
process. For example, recent work by Wang et al.[14] tried out
joint decoding in keyword search tasks. In their work, a Tan-
dem and a Hybrid acoustic model, which share the same HMM
structure and decision tree, are combined together.

Currently, WFSTs are the dominant structure for ASR de-
coding, but there is limited research on combining different
acoustic models under WFSTs. A standard WFST provides a
unified framework for speech recognition systems to represent
different knowledge sources, i.e. the acoustic model, context
model, pronunciation model and language model, which are
generated as separate WFSTs: H , C, L, G, and then composed
and optimized with WFST operations to obtain the final graph
for the decoding phase. Each internal arc in a WFST carries a
single weight corresponding to the negative log probability of
the arc, and a single label (for H , G) or label pair (for C, L) to
build the probabilistic word sequence.

Because standard WFSTs only carry a single weight and a
single input label, it is not obvious how to apply combination
of multiple acoustic models. When considering multi-stream
decoding, one might choose to combine acoustic model infor-
mation at the frame level (as in [14, 15], inter alia), which does
not require changing the WFST decoding structure. A system
that allows for model combination to happen at a longer time-
frame under WFST will need to modify the WFST structure.
For example, [16] employed a Multi-Tape FST to combine fea-
tures generated at variable rates.

So far, there is not an effective framework to combine dif-
ferent acoustic models that have distinct decision tree structures
at different levels of the speech recognition chain. To do this,
it requires a vector of partial hypothesis scores and labels to be
carried along the WFST decoding graph and pass through the
decoding process. In this paper, we propose a framework to
achieve such kind of combinations.

Our framework integrates different trained acoustic models
into the decoding process by extending the one-label WFST lat-
tice to include multiple labels and weights on the arcs of WFST.
Each of the labels comes from a separate acoustic model, and
represents a tied tri-phone state (senone). While decoding,
all labels will be kept on the WFST till the end of decoding.
Then the labels corresponding to the best path will be chosen
to form the final hypothesis. We refer to this extended WFST
as parallel-labeled WFST. Since there are multiple labels and
weights on the arc, in order to do WFST computations, we
need to extend the traditional single-weight (scalar) semiring
to a vector semiring. We build on Shafran et al.’s idea [2] of the
lexicographic semiring which carries multiple weights, but our

weights correspond to scores from multiple acoustic models.

2.1. Vector semirings

In contrast to the scalar semiring defined over R, a vector semir-
ing is defined over Rn. As an example, we extend the scalar log
semiring and scalar tropical semiring as shown in Figure 1.

In the definition of the tropical vector semiring, the⊕ oper-
ation is extended to a vector space to select the minimum value
between vectors. It is important to note that there are differ-
ent ways to define the ⊕ operation: one could define ⊕ to pick
the vector with the minimum norm, or to pick the point-wise
minimum of each element in the vectors; the space of possi-
ble ⊕ operations is a point of future exploration. The particular
choice of ⊕ we use here is discussed in the next section.

2.2. WFST graph generation and decoding

To extend the WFST, we first train multiple acoustic models
with different data sources or different forms of the same data.
Because the models are trained separately, we will have differ-
ent decision trees and therefore different outputs for a single
acoustic unit. For example, in our experiments with triphones,
each acoustic model would generate a different senone label for
a single frame, and we combined all the senone labels together
to form an integrated H transducer. Each arc in the H trans-
ducer now carries multiple senone labels in parallel and their
respective weights. We also extend the C, L, and G transduc-
ers to carry multiple labels and weights. Finally, we compose
these parallelized H , C, L, G transducers and determinize and
minimize to obtain the final WFST.

The combination can be achieved at different levels of the
decoding graph H◦C◦L◦G. In our pilot experiments, we com-
bine at the utterance level, which is theoretically equivalent to
choosing the maximum likelihood model. During the decoding
process, the scores of the multiple acoustic models are accu-
mulated separately, and at the end of one whole utterance, the
one with the best score is picked for calculating the hypothe-
sis of the utterance. The particular choice of the tropical vector
semiring ⊕ (Section 2.1) allows us to implement selection of
the best score.

Key to this process is a new operation, FOLD, which can
be thought of as a process to take an FST W1 defined on vector
semiring s1, and return FST W2 defined on scalar semiring s2:

FOLD(W1, s1, s2)→W2.

In essence, the FOLD function maps a graph with multiple
weights to another graph with a single weight. Therefore, the
combination of two acoustic models at the utterance level can
be formally represented as

FOLD(< H1, H2 > ◦C ◦ L ◦G, s1, s2),

where H1 and H2 are the two acoustic models to be combined,
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s1 is a two-weight tropical semiring and s2 is a scalar tropi-
cal semiring. The resulting graph will be a WFST with single
weight.

There is more than one way to define how the FOLD func-
tion maps the weights. Choosing the hypothesis with the highest
likelihood corresponds to the max operation. However, one can
consider more complex operations that implement other combi-
nation methods (e.g., Minimum Bayes Risk).

We can also imagine that the combination can be done at
different levels of the decoding chain, e.g. the word level:

FOLD(< H1, H2 > ◦C ◦ L, s1, s2) ◦G,

While theoretically our pilot experiments choose the maxi-
mum probability hypothesis over all models, in practice there
may be interactions with pruning: parallel decoding may
change the likelihood of pruning out the correct hypothesis. For
example, when multiple models are used, even if the score of
one of the models is lower than the pruning threshold, the cor-
rect hypothesis can still be kept if the scores of the other models
are higher than the pruning threshold. It is unclear to what de-
gree this is actually an issue.

3. Data Set Description
To evaluate our framework for acoustic model combination,
four sets of experiments were conducted on Switchboard [17]
and CHiME 2 [18] datasets with the Kaldi toolkit [19].

For Switchboard dataset, the JHU WS96 split is used to di-
vide the data. There are in total 75888 utterances in the training
set and 409 utterances in the evaluation set. After the removal of
duplications and utterances that are too short, 50868 utterances
are selected from the training set to train the models.

The CHiME 2 dataset is constructed based on the Wall
Street Journal 5000-word vocabulary speech corpus. The train-
ing set contains 7138 utterances recorded from 83 different
speakers; a randomly selected SNR within the range of -6 to
9 dB is applied to each of the utterances. The development set
includes 409 noisy utterances from 10 speakers, while the eval-
uation set consists of 330 noisy utterances from 8 other speak-
ers.

4. Experimental Setup
We conducted four pilot experiments to examine our proposed
framework in combining different acoustic models. For each
experiment, we also calculated the ratio of computation time of
each combined system to their corresponding baseline system
to see if our proposed framework is able to save time.

4.1. Gender-dependent Switchboard

Our first pilot experiment uses two acoustic models trained sep-
arately for males (26354 utterances) and females (24514 ut-
terances). Two standard HMM/GMM models were trained in
Kaldi for the two genders and then combined using the multi-
stream decoder. The baseline system for comparison was a
speaker independent system with standard HMM/GMM setup.
MFCC delta + double-delta features were used for all systems
and no speaker adaptation or discriminative training was used.

4.2. MFCC and PLP features with GMM models

A second experiment tests the ability to use models based on
different acoustic features. MFCC and PLP features are the two

commonly used features in the field. PLP features are more
robust when there is an environmental mismatch between the
training and testing data. MFCC features, on the other hand,
can perform slightly better than PLP when training and testing
data are both taken from a clean environment.

During our experiments, we trained separate GMM acous-
tic models for MFCC and PLP features using the same full
Switchboard training set. These two models were then com-
bined and the results were compared with the model trained
only on MFCC or PLP respectively.

4.3. MFCC, PLP and filter bank features with DNN models

The third set of experiments repeats (and expands) the previ-
ous experiment, but with more state-of-the-art DNN acoustic
models. We combined three types of features: MFCC, PLP
and filter bank features. MFCC and PLP features were trans-
formed with LDA+FMLLR transformations, which were com-
puted from previous GMM-HMM system. For each of the three
features, we trained separate DNNs and used our framework to
combine the three DNN systems.

The DNN training consisted of two steps. Firstly, we
trained the DNNs with the cross-entropy criterion. The features
were transformed to have zero mean and unit variance before
they were used as the input of the DNNs. Then the state-level
minimum Bayes risk (sMBR) criterion was used to train the fi-
nal set of DNNs. The previous cross-entropy DNNs were used
as the starting point for the training of sMBR DNNs, and the
training of the DNNs was started from using a uni-gram lan-
guage model to generate the lattices.

4.4. Combining DNN models for different noise levels using
CHiME 2 dataset

The baseline system we used for this set of experiments is a
7-layer DNN model trained with the whole CHiME 2 training
dataset and the sMBR criterion. Our constrast models were
developed by training 6 separate DNN models for data corre-
sponding to one SNR level. MFCC features were used to ob-
tain GMM-HMM models, based on which 7-layer DNN models
were then trained with filter-bank features. As above, the sMBR
criterion was used during DNN training.

5. Pilot Results
In this section, we present the preliminary results obtained from
our experiments. Table 1 shows the baseline model WER,
multi-stream combined system WER, best likelihood for each
model and MBR combination WER. We include best likelihood
WER to show the best possible result that can be achieved from
multiple systems without the use of combination techniques; in
the theoretical case of no pruning during decoding, the best like-
lihood and multi-stream systems should match given the cur-
rent definition of the ⊕ combination operation used in this pa-
per (max probability). The WER difference between the two
systems reflects the interaction of the vector semiring with the
pruning in the decode process. In the columns of multi-stream
WER and best likelihood WER, we also report the ratio of com-
putation time to a single independent baseline model. We also
use the MBR combination technique as comparison to validate
our framework, since the MBR combination technique is re-
ported to show improved performance than traditional ROVER
and CNC [10]. The MBR technique is able to find hypothesized
word sequences that minimize the Bayes’ risk of producing the
wrong word by combining the lattices generated by different

1910



Experiments Baseline WER Sub-systems Multi-Stream WER Best Likelihood WER MBR
Combined (Time rel. to baseline) (Time rel. to baseline) Combination

proposed method

Gender Dependent 40.0% Male+Female 39.6% (1.0x) 41.2% (2.0x) 39.8%
SWB GMM (MFCC)
MFCC/PLP MFCC 40.0% MFCC+PLP 39.9% (1.1x) 39.8% (2.0x) 39.8%
SWB GMM PLP 40.5%

MFCC 26.4% MFCC+PLP 26.3% (1.1x) 26.2% (2.0x) 26.1%
MFCC/PLP/fBank PLP 27.5% MFCC+fBank 26.2% (1.1x) 26.1% (2.0x) 26.1%
SWB DNN fBank 26.9% MFCC+PLP

+fBank% 26.1% (1.1x) 26.1% (3.0x) 25.9%
SNR dependent
CHiME2 DNN 21.1% 6 SNR Levels 20.6% (2.4x) 20.4% (6.1x) 20.5%

Table 1: Word error rates (WER) and relative decode times for a single (baseline) model and multi-stream one pass decoder combining
multiple models. Comparisons are provided with systems that run multiple decoders and choose the output with either Best Likelihood
at the utterance level and MBR-based lattice combination.

systems. Because the MBR system allows combination at the
word level, we expect that this would be a top-line estimate of
performance on these tasks.

As is seen in Table 1, across the set of experiments, there
is typically some improvement by combining acoustic models;
the improvement is not very dramatic but is relatively consis-
tent, which helps to validate our proposed framework, as the er-
ror rates for the multi-stream decoder are almost always within
±0.2% of the result from multiple decoders. The best result
comes from the CHiME-2 experiment, with about 0.5% im-
provement on the test set using SNR-dependent models.

We note that the accuracy improvement of the combined
systems relies on whether the different systems are able to pro-
vide complementary information. As the results show, the gen-
der dependent combined system showed higher improvement
than the systems that combined acoustic models from different
features (i.e. MFCC/PLP GMM and MFCC/PLP/fBank DNN).
This may be because the features we used in the experiments
carry similar information, which limits the space for improve-
ment in the combined systems. To some degree, we expected
these results because taking the result from the highest scor-
ing model is a relatively straightforward combination method,
especially compared to typical lattice combination techniques.
However, the experiment results showed that the performance
of our proposed framework was also comparable with the MBR
combination technique, which is encouraging given the simplic-
ity of the combination rule used here.

The most critical advantage of the approach is the time sav-
ing observed using single-pass models over comparable mul-
tiple decodes. As Table 1 shows, the combined systems all
demonstrate much shorter decode times compared with the
baseline models.1 For the combination of two models (two gen-
ders and two features), the computation time of the combined
systems is very close to the traditional single acoustic systems.
For the combination of three models (MFCC, PLP, Filter Bank),
the computation time of the combined system showed a consid-
erable reduction compared with the single baseline model. For
the six-model combination on the CHiME 2 dataset, the reduc-
tion of computation time was significant: more than a factor of
two faster over decoding separately. Parallelizing the decod-

1The reported factor includes computation times for both acoustic
model (GMM or DNN) and the actual decode computation.

ing processes through the multi-stream WFST decoder can save
considerable computation time over multiple decodes.

Additionally, we also calculated the size of WFST used for
decoding. For most of the experiments, the WFSTs of the com-
bined systems have almost the same size as their corresponding
single model baseline system. Even for the 6-model combined
system on CHiME2 dataset, the increase of the number of nodes
and arcs is about 10%. In the experiments, all the combined
decoding graphs were easily fit into memory on standard linux
servers, and we did not find dramatic increase in memory usage.

6. Conclusions
In this paper, we describe an extension of the WFST frame-
work, using vector semirings, to handle multi-stream decoding
and present four sets of experiments examining the effective-
ness of combining models within this framework. Our proposed
framework has two major advantages: 1) it allows the flexibility
to combine multiple systems at different levels of the decoding
pipeline (e.g. frame, subword, word and utterance level); 2) it
allows one-pass decoding, which is simpler than traditional lat-
tice combination methods. As shown in our pilot experiments,
the framework achieves improved accuracy while efficiently re-
ducing computation time. The proposed system is relatively
memory-efficient as well, even when decoding six streams si-
multaneously, because of the shared decoding structure between
the streams.

We plan in future work to extend this approach in two direc-
tions: first, we plan to examine a richer set of combination func-
tions for the FOLD operation (as well as other design choices,
such as the definition of the ⊕ operator for the vector semir-
ing). The pilot experiments that were conducted in this paper
used the most straightforward combination method (choose the
maximum likelihood utterance), and we plan to explore differ-
ent alternatives that allow for cross-fertilization of hypotheses
from different streams.

A second thread of work concerns experiments on the selec-
tion of the optimized result at the word or sub-word level rather
than at the utterance level (as used in this paper). This exten-
sion requires reengineering the FOLD operation to be done on
the fly, similar to the process of delayed composition. It would
also be interesting to merge this framework with the approach
of Wang et al. [14] to fuse DNN and GMM acoustic models.
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