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Abstract

Speaker recognition with short utterance is highly challenging.
The use of i-vectors in SR systems became a standard in the
last years and many algorithms were developed to deal with the
short utterances problem. We present in this paper a new tech-
nique based on modeling jointly the i-vectors corresponding to
short utterances and those of long utterances. The joint distribu-
tion is estimated using a large number of i-vectors pairs (coming
from short and long utterances) corresponding to the same ses-
sion. The obtained distribution is then integrated in an MMSE
estimator in the test phase to compute an ”improved” version of
short utterance i-vectors. We show that this technique can be
used to deal with duration mismatch and that it achieves up to
40% of relative improvement in EER(%) when used on NIST
data. We also apply this technique on the recently published
SITW database and show that it yields 25% of EER(%) im-
provement compared to a regular PLDA scoring.
Index Terms: speaker recognition, i-vector, short utterance, du-
ration mismatch, joint modeling.

1. Introduction
Current text-independent speaker recognition systems perform
well when enrollment and test data are abundant but their per-
formance suffers greatly when not enough data is provided
[1–4]. Such constraint occurs frequently in real applications
where it can be difficult to collect enough data since record-
ing conditions cannot always be controlled. One example is
speaker authentication in banking applications where users can
be reluctant to provide enough speech data particularly at the
test phase. Another example is forensic applications where it
is really difficult, if not impossible, to collect sufficient data.
I-vector based SR systems have been proven to provide an ad-
vantageous framework when dealing with short utterances [4]
due to its nature of sharing statistical strength among differ-
ent acoustic regions. Different techniques have been proposed
based on this framework to either improve the scoring model by
taking into account the duration of segments or exploit phonetic
content to achieve more efficient recognition.

The effect of short and mismatched duration utterance mod-
eling was studied in [5] and an ad-hoc score fusion technique
was introduced to deal with duration mismatch. In this tech-
nique, a test i-vector is projected onto different total variability
spaces corresponding to different durations, then the resultant
scores are summed and converted to a single value. A different
approach was proposed in [6,7] in order to improve the standard
G-PLDA model [8] by accounting for the ”uncertainty” of the
i-vector extraction process. This model, called Full Posterior
Distribution PLDA (FP-PLDA), exploits the covariance of the
i-vector distribution and improves the recognition performance
in presence of duration mismatch by up to 10%.

Alternatively, a range of techniques based on phonetic and
prosodic information have also been proposed such as ”subre-
gion modeling” [9] where phoneme posteriors are used to par-
tition the acoustic space into subregions modeled by GMMs.
Phonetic information present in short utterances is then ex-
ploited by scoring test utterance with subregion models. An-
other ”content matching” technique based on phonetic informa-
tion has been developed in [10] using a DNN where the en-
rollment data is transformed to be phonetically matched to a
given test utterance. A different DNN-based approach has been
proposed in [11] to deal with short utterances. In this system,
stacked filterbank features are fed to a DNN which is trained as
a speaker classifier. Then, the averaged output of the last layer
is used as speaker model in test. An improvement by up to
25% is observed when using this model. Finally, an algorithm
termed ”dual-judgment mechanism” was presented in [12] tak-
ing advantage of prosodic features (pitch and formants) in order
to improve the decision process in presence of short utterances.
Improvement by up to 25% is observed in such system com-
pared to an MFCC-based SR system.

In this paper, we present a new probabilistic approach op-
erating in the i-vector space based on a joint long and short ses-
sion i-vectors modeling. It aims at improving the quality of
short test i-vectors by estimating the corresponding long ver-
sion using an MMSE (minimum mean square error) estimator.
To do so, a large set of i-vectors pairs (long and short) corre-
sponding to the same session are used in the training phase to
estimate a joint model. This distribution is then integrated in
an MMSE (minimum mean square error) estimator in the test
phase to compute an ”improved” version of short test i-vectors.
This procedure offers two advantages : First, it allows to recover
some of the ”missing” information in case of short utterances
based on a large set of train examples (short/long pairs). Sec-
ond, it makes the scoring procedure more efficient since train-
ing a PLDA model using long utterances can perform poorly on
short test utterances [5]. We show that applying this technique
on short utterances prior to scoring yields 40% of relative EER
improvement compared to a regular PLDA scoring when long
utterances are used to train the PLDA. We also apply this tech-
nique on the recently published SITW database and show that it
yields 25% of EER improvement compared to a regular PLDA
scoring.

This paper is structured as follows, Section 2 presents the
joint modeling of short and long utterances. Section 3 presents
the experimental protocol and Section 4 details the experiments
and results achieved using out technique.

2. I-vectors transformation using a joint
probability model

It is known that long utterances perform better than the short
ones in text-independent speaker recognition tasks [5, 13] since
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they convey richer speaker-specific information. But collecting
enough data in the real world, either for enrollment or test, can
be difficult depending on the application (e.g forensics). Based
on this constraint, we propose a transformation operating in the
i-vector space that tries to ”improve” test i-vectors correspond-
ing short utterances by using a joint model between long and
short session i-vectors.

This technique is inspired from the ”Stereo Stochastic Map-
ping” algorithm (SSM) which was first introduced for robust
speech recognition [14, 15] then adapted to speaker verification
in [16]. In [16], SSM was used to create a mapping between
noisy and clean cepstral features based on their joint distribu-
tion. In this paper, we use this algorithm in the i-vector space in
order to map i-vectors corresponding to short utterances to their
”long” versions.

Let’s define two random variables x and y representing re-
spectively clean i-vectors corresponding to short and long ut-
terances and let M be the dimension of the i-vector space. We
define a third random variable called z as the concatenation of
x and y :

z =

(
x
y

)
(1)

Such variable lie in a 2M -dimensional space and can be
modeled using a mixture of Gaussians :

p(z) =

K∑
k=1

ckN (z;µz,k,Σz,k) (2)

where :

• K is the number of GMM components.

• ck is the weight of the kth Gaussian.

• µz,k corresponds to the mean vector of the kth compo-
nent.

• Σz,k corresponds to the covariance matrix of the kth

component.

This GMM represents the joint distribution between i-
vectors corresponding to short and long utterances for each
Gaussian k. For each component, it is possible to decompose
the mean and covariance matrix as :

µz,k =

(
µx,k

µy,k

)
(3)

Σz,k =

(
Σxx,k Σxy,k

Σyx,k Σyy,k

)
(4)

Where Σyx,k = ΣT
xy,k and Σxy,k models the joint covari-

ance between the two representations (long and short i-vectors).
The problem of transforming a short i-vector y0 to its long

version can be formulated using an MMSE (minimum mean
square error) estimator. For a given test i-vector y0 correspond-
ing to a short utterance, its long version can be estimated as:

x̂ = E[x|y0] =

∫
x

p(x|y0)xdx =
∑
k

∫
x

p(x, k|y0)xdx

=
∑
k

p(k|y)

∫
x

p(x|k, y0)xdx =
∑
k

p(k|y)E[x|k, y]

(5)
For each component k, the Schur complement [17] can be

used to compute E[x|k, y] as :

E[x|k, y] = µx,k + Σxy,kΣ−1
yy,k(y − µy,k) (6)

The final solution can then be written as :

x̂ =
∑
k

p(k|y)E[x|k, y]

=
∑
k

p(k|y)(µx,k + Σxy,kΣ−1
yy,k(y − µy,k))

(7)

Equation 7 can be re-written as :

x̂ =

K∑
k=1

p(k|y0)(Fky0 + gk) (8)

with :
Fk = Σxy,kΣ−1

yy,k (9)

gk = µx,k − Σxy,kΣ−1
yy,kµy,k (10)

In other words, this MMSE-based mapping is a weighted
sum of linear functions contributed by each Gaussian compo-
nent k from the joint GMM distribution p(x, y). The weight is
the posterior probability p(k|y) and the linear function is built
using the hyper-parameters of each component.

3. Experimental protocol
Our experiments operate on 19 Mel-Frequency Cepstral Coeffi-
cients (plus energy) augmented with 19 first (∆) and 11 second
(∆∆) derivatives. A mean and variance normalization (MVN)
technique is applied on the MFCC features estimated using the
speech portion of the audio file. The low-energy frames (corre-
sponding mainly to silence) are removed.
A gender-dependent 512 diagonal component UBM (male
model) and a total variability matrix of low rank 400 are es-
timated using 15660 utterances corresponding to 1147 speak-
ers (using NIST SRE 2004, 2005, 2006 and Switchboard data).
The LIA SpkDet package of the LIA RAL/ALIZE toolkit is
used for the estimation of the total variability matrix and the
i-vectors extraction. The used algorithms are described in [18].
Finally a PLDA-based scoring [8] is applied. The eigenvoice
rank the PLDA models is equal to 100 and the eigenchannel ma-
trix is kept full-rank (400). PLDA is preceded by 2 iterations of
LW-normalization (spherical nuisance normalization [19]). The
equal-error rate (EER) over the NIST SRE 2008 male test data
on the ”short2/short3” task under the ”det7” conditions [20] will
be used as a reference to monitor the performance improve-
ments compared to the baseline system.

Short versions of train and test data were generated for dif-
ferent durations : 5s, 10s, 15s, 20s and 30s. This trimming is
done in the temporal domain by randomly selecting a continu-
ous portion of speech from the original audio file.

4. Experiments and results
In this section, we start by showing the importance of duration
matching in PLDA models training. Then, we apply the pro-
posed technique on short utterances and analyze the amount of
data needed to achieve good performances. Finally, we apply
it on the SITW database in order to test its performance in real
conditions.
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Figure 1: Variation of EER with the amount of i-vectors used to train SSM for 5s, 10s, 15s and 20s test durations (10 measures for each
number of segments).

4.1. Effect of train duration on PLDA performance:

For different durations (5s, 10s, 15s, 20s, 30s and full duration),
test data are scored using different PLDA models (each one cor-
responds to a specific duration and the ”mixed” model uses train
data belonging to all durations). Table 1 shows that matching
durations between train and test data improves the system per-
formance compared to a full PLDA (even though long utter-
ances contain more speaker-specific data) which joins the find-
ings of [5].

These results motivate us to transform i-vectors correspond-
ing to short utterances using the technique proposed in Section
2. This transformation would make the scoring with the full-
PLDA model more efficient and avoid having to match the du-
rations between train and test in a real SR system (which is im-
possible for most applications).

4.2. Using the joint i-vectors model for short i-vectors
transformation:

For each duration D ∈ {5s, 10s, 15s, 20s, 30s,full duration}:

1. The i-vectors are extracted for the full-length sessions
{xi} and their short versions {yi} of duration D.

2. The distribution pD(z) is estimated using 20 iterations
of the EM algorithm (different number of components
are tested for each experiment ; K ∈ {1, 2, 3}).

3. Each short enrollment/test i-vector is transformed using
Equation 8.

Table 2: Performance of the joint model trained with 15660
pairs of short and long utterances.

EER
Full
train

Joint model
1 Gauss.

Joint model
2 Gauss.

Joint model
3 Gauss.

30s 3.59 2.98 3.12 3.25
20s 5.26 4.09 4.69 4.87
15s 7.28 5.21 5.88 6.31
10s 11.84 7.06 8.32 9.35
5s 21.83 13.21 15.32 17.12

Table 2 shows the performance of the joint model com-
pared to a baseline system performance (PLDA trained using
long segments). The distribution pD(z) is trained for each du-
rationD independently then applied on the corresponding short

Table 1: Effect of the train/test duration on the system performance.
EER

Train speech duration
Full 30s 20s 15s 10s 5s Mixed

Test
speech

duration

Full 1.59 2.05 2.49 2.73 3.18 4.56 2.63
30s 3.59 3.18 2.96 3.18 3.87 5.21 3.41
20s 5.26 4.32 3.87 3.87 4.78 5.69 4.55
15s 7.28 5.92 5.89 5.50 5.72 6.54 6.37
10s 11.84 8.65 7.99 7.28 7.75 8.43 9.11
5s 21.83 17.31 15.91 15.26 13.62 13.21 16.40
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test i-vectors prior to scoring.

This model improves the performance by up to 40% (1
Gaussian model) and does not require a 2 or 3-components
GMM for pD(z) but uses a large amount of data to be efficient.
In the next subsection, we will try to find the minimal amount
of data needed to learn the joint distribution while remaining
effective.

4.3. Effect of the amount of data used to train p(z) for dif-
ferent durations:

Figure 1 shows the variation of the equal error rate (EER%)
with the number of train segments (pairs) to train p(z). In this
subsection, we use a 1-Gaussian model for the joint model since
this configuration gave the best results in the previous subsec-
tion and study the effect of the amount of data used to train each
model. It is clear from Figure 1 that 3000 pairs of i-vectors are
needed to train p(z) for each duration in order to achieve good
results using the joint model.

4.4. Performance on SITW:

In this subsection, we apply this technique on the recently pub-
lished database SITW [21] to assess the improvement of recog-
nition performance in real conditions. The SITW database con-
tains a short-utterance condition where test utterances have a
duration that varies between 15s and 25s. We will test our
method on male data. The models used in this experiment are
trained from clean NIST train data. Figure 2 shows the distri-
bution of speech durations in the test set corresponding to the
clean male 15s-25s condition of the core-core task.

Figure 2: Distribution of speech duration for the male clean
15s-25s condition (the core-core task) in the SITW database.

Table 3 shows the performance of the joint modeling tech-
nique on short clean male test sessions of SITW (< 30s of
speech duration and SNR > 20dB). Different pD(z) dis-
tributions are estimated and applied on all short test i-vectors
(< 25s of speech duration). The learned distributions corre-
spond to D ∈ {30s, 20s, 15s, 10s, 5s} and the ”mixed” model
uses i-vectors corresponding to all durations.

This model achieves 25% of relative EER improvement
compared to the baseline system performance which proves the
validity of our technique in real conditions.

Table 3: Performance of the joint model technique on SITW.
EER

Baseline
(long train)

After using the joint model
30s 20s 15s 10s 5s Mixed

11.62 9.96 9.53 8.95 9.03 9.53 8.71

5. Conclusion
In this paper, we presented a new probabilistic approach to im-
prove the recognition performance on short utterances based on
a joint model of session i-vectors corresponding to long and
short utterances. The joint distribution is estimated using a
large set of i-vectors pairs (long i-vectors and their short ver-
sions generated artificially) then integrated in an MMSE estima-
tor in the test phase to compute an ”improved” version of noisy
test i-vectors. We tested this algorithm in various configurations
and showed it can achieve up to 40% of relative improvement
in EER compared to a backend trained using long utterances.
Then, we developed a version that can be used to handle multi-
ple durations and tested it on the SITW database and showed a
significant gain compared to the baseline system performance.
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