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Abstract
While spectral domain speech enhancement algorithms us-
ing non-negative matrix factorization (NMF) are powerful in
terms of signal recovery accuracy (e.g., signal-to-noise ratio),
they do not necessarily lead to an improvement in the qual-
ity of the enhanced speech in the feature domain. This im-
plies that naively using these algorithms as front-end process-
ing for e.g., speech recognition and speech conversion does
not always lead to satisfactory results. To address this prob-
lem, this paper proposes a novel method that aims to jointly
enhance the spectral and cepstral sequences of noisy speech,
by optimizing a combined objective function consisting of an
NMF-based model-fitting criterion defined in the spectral do-
main and a Gaussian mixture model (GMM)-based probability
distribution defined in the cepstral domain. We derive a novel
majorizer for this objective function, which allows us to de-
rive a convergence-guaranteed iterative algorithm based on a
majorization-minimization scheme for the optimization. Ex-
perimental results revealed that the proposed method outper-
formed the conventional NMF approach in terms of both signal-
to-distortion ratio and cepstral distance.
Index Terms: speech enhancement, Gaussian mixture model,
non-negative matrix factorization, mel-frequency cepstral coef-
ficients, majorization-minimization

1. Introduction
The presence of noise in speech can significantly degrade the
quality of speech transmission systems and the performance
of speech processing systems including speech recognition and
voice conversion. Many speech enhancement algorithms have
been proposed with the goal of overcoming this problem. Con-
ventional speech enhancement methods can be roughly divided
into two types, according to the domain in which the enhance-
ment is performed, namely feature domain methods and spec-
tral domain methods. The former aims to recover clean speech
features (typically cepstral features) whereas the latter aims to
recover clean speech spectra (or signals).

Since feature domain methods directly enhance the features
of speech, they are particularly useful as a front-end for speech
processing systems that use speech features as inputs. Stereo
piecewise linear compensation for environment (SPLICE) [1,2]
is a typical example of such methods. With this approach, a
Gaussian mixture model (GMM) is used to model the joint
distribution of clean and noisy speech features. The GMM is
trained using stereo synchronous data of noisy and clean speech
samples. By using the trained GMM, a mapping function from
a noisy speech feature to its clean version is defined as the con-
ditional expectation of a clean speech feature given a noisy ob-
servation. Since each of the Gaussians represents a linear trans-
form, the mapping is piecewise linear. Although it has been
shown that it yields a steady improvement in speech recogni-
tion performance, one drawback is that the performance tends
to be poor when the test condition does not match the training
condition (when we face unseen noise). Adaptation techniques
can be used to compensate for this mismatch [3], but the noise
characteristics of the test condition must not differ significantly

from those of the training condition for these techniques to work
successfully. Other feature domain methods have more or less
the same limitations [4–7].

In contrast to the feature domain methods, spectral domain
methods are particularly noteworthy in that they can work suc-
cessfully even without any prior knowledge about the noise
characteristics. This is because we can make use of a reason-
able spectrum model to estimate the underlying speech com-
ponents in an observed spectrum thanks to the additive nature
of speech and noise components in the spectral domain. The
semi-supervised non-negative matrix factorization (NMF) ap-
proach [8] is an example of such methods, and it has attracted
a lot of attention in recent years. Factorizing the magnitude (or
power) spectrogram of a mixture signal, interpreted as a non-
negative matrix, into the product of two non-negative matri-
ces can be interpreted as approximating the observed spectra at
each time frame as a linear sum of basis spectra scaled by time-
varying amplitudes. This amounts to decomposing the observed
spectrogram into the sum of low rank spectrograms. In a semi-
supervised setting, the basis spectra of speech are firstly trained
using clean speech samples. NMF is then applied to an observed
noisy speech spectrogram, where a subset of the basis spectra is
fixed at the pretrained spectra. In this way, we can separate out
the underlying speech components using the Wiener filter ob-
tained with the estimated speech and noise spectrograms. Al-
though this approach is powerful in terms of a signal-to-noise
ratio measure or some subjective criteria, one drawback is that
they do not necessarily lead to an improvement in the quality
of the enhanced speech in the feature domain. This implies that
naively using these algorithms as front-end processing for ap-
plications such as speech recognition and voice conversion does
not always lead to satisfactory results.

As stated above, feature domain methods (e.g., SPLICE)
and spectral domain methods (e.g., NMF) have their own ad-
vantages and disadvantages. To address the drawbacks and
combine the advantages of these methods, this paper proposes
a novel approach that aims to jointly enhance the spectral and
cepstral sequences of noisy speech, by optimizing a combined
objective function consisting of an NMF-based model-fitting
criterion defined in the spectral domain and a GMM-based
probability distribution defined in the cepstral domain. We de-
rive a novel majorizer for this objective function, which allows
us to derive a convergence-guaranteed iterative algorithm based
on a majorization-minimization scheme for optimization.

2. Formulation
2.1. Problem setting
We start by reviewing the formulation of the NMF approach.
Let us denote an observed magnitude (or power) spectrogram

as Y = (Yω,t)Ω×T ∈ R
≥0,Ω×T , where ω and t are fre-

quency and time indices. Given an observed spectrogram Y,
we consider approximating it with the sum of the speech and

noise components, Xω,t = X
(s)
ω,t + X

(n)
ω,t , where X

(s)
ω,t and

X
(n)
ω,t are represented by non-negative linear combinations of

Ks speech basis spectra H
(s)
1,ω, . . . , H

(s)
Ks,ω

and Kn noise basis
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spectra H
(n)
1,ω , . . . , H

(n)
Kn,ω:

X
(s)
ω,t =

Ks∑
k=1

H
(s)
k,ωU

(s)
k,t , X

(n)
ω,t =

Kn∑
k=1

H
(n)
k,ωU

(n)
k,t . (1)

In a semi-supervised setting, the speech basis spectra

H
(s)
1,ω, . . . , H

(s)
Ks,ω

are pretrained using clean speech samples.

Thus, U (s), H(n) and U (n) are the unknown variables to be
estimated in the separation process. NMF leads to different op-
timization problems according to the definition of the measure
of the difference between Y and X = (Xω,t)Ω×T . Here we
use the I divergence

I(Y |X) =
∑
ω,t

(
Yω,t log

Yω,t

Xω,t
− Yω,t +Xω,t

)
, (2)

as the goodness-of-fit criterion. Once U (s), H(n) and U (n) are
obtained with an NMF algorithm, we can separate out the un-
derlying speech components using the Wiener filter constructed

with X(s) = (X
(s)
ω,t)Ω×T and X(n) = (X

(n)
ω,t )Ω×T . As stated

above, this method does not necessarily lead to an improvement
in the quality of the enhanced speech in the feature domain, im-
plying that naively using this method as a front-end for such
applications as speech recognition and voice conversion does
not always produce satisfactory results. When performing sep-
aration, we would want to ensure that the cepstral feature of
the separated component is also enhanced. With this as motiva-
tion, we introduce a probability density function over the cep-

stral representation of X(s) to define an additional cost func-
tion. Here, we define it with the logarithm of a GMM in the
MFCC domain

K(X(s)) = log
∏
t

∑
m

wm

∏
n

N (X (s)
n,t ;μn,m, σ2

n,m), (3)

X (s)
n,t =

∑
l

cn,l log
∑
ω

fl,ωX
(s)
ω,t, (4)

where X (s)
t = (X (s)

0,t , . . . ,X (s)
N−1,t)

T is an N -dimensional

mel-frequency cepstral coefficient (MFCC) vector of

X
(s)
0,t , . . . , X

(s)
Ω−1,t. Here, fl,ω is the lth coefficient of the

mel-filter banks and {cn,l}0≤n≤N−1,0≤l≤L−1 are the coeffi-
cients of the discrete cosine transform. Note that this expression
reduces to the log mel-spectrum when cm,n = δm,n (where δ
denotes Kronecker’s delta), and the log-power spectrum when
fn,ω = δn,ω and cm,n = δm,n, implying that the following
derivation does not restrict the feature vector definition to
MFCC alone. θ = {μm,Σm, wm}1≤m≤M is a set consisting

of the GMM parameters where μm = (μ1,m, . . . , μN,m)T ,
Σm = diag(σ1,m, . . . , σN,m) and wm are the mean, covari-
ance and weight of the mth Gaussian components. As with the
speech basis spectra, θ is pretrained from clean speech samples.

Thus, the greater Eq. (4) becomes, the more likely X(s) is to
be enhanced in the feature domain.

The proposed method considers an optimization problem
that consists of minimizing a combined objective function of
Eqs. (2) and (4)

J (U (s),H(n),U (n)) = I(Y |X)− λK(X(s)), (5)

where λ ≥ 0 weighs the importance of the MFCC-GMM term
relative to the NMF cost. This optimization problem is math-
ematically challenging in the sense that the objective function
simultaneously involves a spectral distance term I(Y |X) and

a cepstral distance termK(X(s)). AlthoughK(X(s)) is simply
a log-GMM when viewed as a function of cepstral parameters

{X (s)}, it becomes more complicated when viewed as a func-

tion of spectral parameters {X(s)}. This paper proposes a novel
general framework for solving this class of optimization prob-
lems.

2.2. Proposed method seen as regularized NMF
The present problem setting can be seen as a regularized vari-

ant of NMF if we interpret −K(X(s)) as a regularization term.
When some of the speech and noise basis spectra become simi-
lar, the decomposition of an observed spectrum into speech and
noise components will not be unique. In such a case, compo-
nents originating from speech can be misinterpreted as noise
components and vice versa, leading to an inaccurate separation.
The regularization term is expected to play the role of eliminat-
ing this kind of indeterminacy by keeping the estimated speech
spectra within a proper range in the MFCC domain. In this
sense, the regularization term can contribute more to improv-
ing the separation performance than the regular (unregularized)
NMF. This effect will be confirmed in Sec. 3.

2.3. Majorization-minimization algorithm
Although it is difficult to solve the above optimization problem
analytically, we can develop a computationally efficient algo-
rithm to find a locally optimal solution based on a majorization-
minimization method. Note that the majorization-minimization
method itself is not an algorithm, but a description of how
to construct an optimization algorithm. When applying the
majorization-minimization method to the problem of minimiz-
ing a certain objective function, the first step is to design an aux-
iliary function called a “majorizer” that never lies below the ob-
jective function. Suppose F (Θ) is an objective function that we

wish to minimize with respect to Θ. A majorizer F+(Θ, α) is

then defined as a function satisfying F (Θ) = minα F+(Θ, α),
where α is called an auxiliary parameter. An algorithm that con-

sists of iteratively minimizing F+(Θ, α) with respect to Θ and
α is guaranteed to converge to a stationary point of the objec-
tive function. It should be noted that this concept is adopted
in many existing algorithms. For example, the expectation-
maximization (EM) algorithm [11] builds a surrogate for a like-
lihood function of latent variable models by using Jensen’s in-
equality. It is also well known for its use in devising an algo-
rithm for NMF [9, 10].

In this section, we derive a majorizer of

J (U (s), H(n), U (n)), according to which we obtain the

update equations for U (s), H(n) and U (n). First, I(Y |X)
involves a “log-of-sum” form of Hk,ωUk,t. Since the negative
logarithm function is a convex function, we can invoke Jensen’s
inequality to construct an upper bound of I(Y |X) with a
“sum-of-logs” form in the same way as [9]

I(Y |X) ≤ I+(Y |X), (6)

I+(Y |X)
c
=
∑
ω,t

(
− Yω,t

∑
k

ζk,ω,t log
Hk,ωUk,t

ζk,ω,t
+Xω,t

)
,

where =c denotes equality up to a constant term and ζk,ω,t is
a positive weight that sums to unity,

∑
k ζk,ω,t = 1. It can be

shown that the equality of Eq. (6) holds if and only if

ζk,ω,t =
Hk,ωUk,t∑
k
′ Hk′,ωUk′,t

. (7)

Note that for convenience of notation here we have defined

Hk,ω = H
(s)
k,ω (k = 1, . . . ,Ks),

Hk+Ks,ω = H
(n)
k,ω (k = 1, . . . ,Kn),

Uk,t = U
(s)
k,t (k = 1, . . . ,Ks),

Uk+Ks,t = U
(n)
k,t (k = 1, . . . ,Kn).

Next, we derive a majorizer of the MFCC-GMM term

−K(X(s)). In the same way as Eq. (6), we can construct
an upper bound of the negative logarithm function by invoking
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Jensen’s inequality

−K(X(s)) ≤ −
∑
t,m

αm,t log
wm

∏
nN (Xn,t;μn,m, σ2

n,m)

αm,t

c
=
∑
t,m

αm,t

∑
n

(Xn,t − μn,m)2

2σ2
n,m

, (8)

where αm,t is also a positive weight that sums to unity. The
equality of this inequality holds if and only if

αm,t =
wm

∏
nN (Xn,t;μn,m, σ2

n,m)∑
m′ wm′

∏
nN (Xn,t;μn,m′ , σ2

n,m′)
. (9)

Since the quadratic function is a convex function, we can em-
ploy the inequality used in [12, 13] to construct an upper bound
of Eq. (8)

(Xn,t − μn,m)2 ≤
∑
l

(cn,l logGl,t − ϕl,n,m,t)
2

βl,n,m,t
, (10)

where βl,n,m,t is an arbitrary positive number that sums to
unity,

∑
l βl,n,m,t = 1, and ϕl,n,m,t is a real number that sums

to μn,m,
∑

l ϕl,n,m,t = μn,m. For convenience of notation

we use Gl,t to denote
∑

ω fl,ωX
(s)
ω,t. It can be shown that the

equality of this inequality holds if and only if

ϕl,n,m,t = cn,l logGl,t + βl,n,m,t(μn,m −Xn,t). (11)

From Eqs. (10) and (8), we obtain

−K(X(s)) ≤
∑
t,l

Al,t(logGl,t)
2 +

∑
t,l

Bl,t logGl,t + d,

(12)

where d is a constant term that does not depend on Hk,ω and
Uk,t. Here, for convenience of notation, we have defined

Al,t =
∑
n,m

αm,tc
2
n,l

2σ2
n,mβl,n,m,t

, (13)

Bl,t = −
∑
n,m

αm,tcn,lϕl,m,n,t

σ2
n,mβl,n,m,t

. (14)

Since Al,t is non-negative, we can use the inequality [14]:

(logGl,t)
2 ≤ 1

Gl,t
+ p(ξl,t)Gl,t + q(ξl,t), (15)

where

p(ξl,t) =
2 log ξl,t

ξl,t
+

1

ξ2l,t
, (16)

q(ξl,t) = (log ξl,t)
2 − 2 log ξl,t − 2

ξl,t
, (17)

to construct an upper bound of the first term of Eq. (12). We
can confirm that the equality of this inequality holds if and only
if

ξl,t = Gl,t. (18)

By focusing on the fact that a reciprocal function is convex in
the positive domain and that fl,ωHk,ωUk,t is positive, we can
apply Jensen’s inequality to 1/Gl,t

1

Gl,t
=

1∑
ω,k fl,ωHk,ωUk,t

≤
∑
ω,k

ρ2l,k,ω,t

fl,ωHk,ωUk,t
,

where ρl,k,ω,t is a positive weight that sums to unity,∑
ω,k ρl,k,ω,t = 1. It can be shown that the equality of this

inequality holds if and only if

ρl,k,ω,t =
fl,ωHk,ωUk,t∑

ω′,k′ fl,ω′Hk′,ω′Uk′,t
. (19)

Care must be taken of the fact that Bl,t can be either non-
negative or negative. Thus, we consider applying different in-
equalities to the second term of Eq. (12) according to the sign
of Bl,t. First, when Bl,t is non-negative, we can show that

Bl,t logGl,t ≤ Bl,t

(
Gl,t

φl,t
+ log φl,t − 1

)
, (20)

where φl,t is an arbitrary positive number. This is simply given
by the fact that a tangent line to the graph of a differentiable
concave function lies entirely above the graph and that a loga-
rithm function is a concave function. We can easily confirm that
the equality of this inequality holds if and only if

φl,t = Gl,t. (21)

Second, when Bl,t is negative, Bl,t logGl,t becomes convex in
Gl,t, and so we can invoke Jensen’s inequailty to construct an
upper bound

Bl,t logGl,t ≤ Bl,t

∑
ω,k

υk,l,ω,t log
fl,ωHk,ωUk,t

υk,l,ω,t
, (22)

where υk,l,ω,t > 0 is a positive weight that sums to unity,∑
k,ω υk,l,ω,t = 1. It can be shown that the equality of this

inequality holds if and only if

υk,l,ω,t =
fl,ωHk,ωUk,t∑

ω′,k′ fl,ω′Hk′,ω′Uk′,t
. (23)

By combining Eqs. (20) and (22), we can write an upper bound
of Bl,t logGl,t as

Bl,t logGl,t ≤δBl,t≥0|Bl,t|
(
Gl,t

φl,t
+ log φl,t − 1

)

−δBl,t<0|Bl,t|
∑
ω,k

υk,l,ω,t log
fl,ωHk,ωUk,t

υk,l,ω,t
,

where δ is an indicator function that takes the value 1 if its ar-
gument is true and 0 otherwise.

To sum up, a majorizer of −K(X(s)) can be written as

−K(X(s)) (24)

≤
∑
t,l

Al,t

(∑
ω,k

ρ2l,k,ω,t

fl,ωHk,ωUk,t
+ p(ξl,t)Gl,t + q(ξl,t)

)

+
∑
t,l

δBl,t≥0|Bl,t|
(
Gl,t

φl,t
+ log φl,t − 1

)

−
∑
t,l

δBl,t<0|Bl,t|
∑
ω,k

υk,l,ω,t log
fl,ωHk,ωUk,t

υk,l,ω,t
+ d.

By combining this with the majorizer of I(Y |X), we can con-
struct a majorizer of the objective function of interest. This ma-
jorizer is particularly noteworthy in that it is given as the sum of
a reciprocal function, logarithm functions and a first order func-
tion of Hk,ωUk,t, which can be minimized analytically with
respect to Hk,ω and Uk,t. We have already seen that the update
equations for the auxiliary parameters are given by Eqs. (9),
(11), (18), (19), (21) and (23). The next step is to derive the
update equations for Hk,ω and Uk,t.
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2.4. Update rules
We can obtain the update rules for Hk,ω and Uk,t by setting
the partial derivatives of the proposed majorizer with respect to

H(s), U (s), H(n) and U (n) at zero. Note that the update rules
of the first two are given as the solutions to quadratic equations.

Since H(s) and U (s) must be non-negative, a positive solution
must be selected. Thus, we finally arrive at the following update
equations

H
(s)
k,ω =

−bk,ω +
√

b2k,ω − 4ak,ωck,ω

2ak,ω
, (25)

H
(n)
k,ω =

∑
t ζk+Ks,ω,tYω,t∑

t Uk+Ks,t
, (26)

U
(s)
k,t =

−ek,t +
√

e2k,t − 4dk,tfk,t

2dk,t
, (27)

U
(n)
k,t =

∑
ω ζk+Ks,ω,tYω,t∑

ω Hk+Ks,ω
, (28)

where

ak,ω =
∑
t

Uk,t + λ
∑
l,t

Al,tp(ξl,t)fl,ωUk,t

+ λ
∑
l,t

δBl,t≥0|Bl,t|
φl,t

fl,ωUk,t,

bk,ω = −
∑
t

ζk,ω,tYω,t − λ
∑
l,t

δBl,t<0|Bl,t|υk,l,ω,t

ck,ω = −λ
∑
l,t

Al,tρ
2
l,k,ω,t

fl,ωUk,t
,

dk,t =
∑
ω

Hk,ω + λ
∑
ω,l

Al,tp(ξl,t)fl,ωHk,ω

+ λ
∑
ω,l

δBl,t≥0|Bl,t|
φl,t

fl,ωHk,ω,

ek,t = −
∑
ω

ζk,ω,tYω,t − λ
∑
ω,l

δBl,t<0|Bl,t|υk,l,ω,t,

fk,t = −λ
∑
ω,l

Al,tρ
2
l,k,ω,t

fl,ωHk,ω
.

We can confirm that when λ = 0 the update rules reduce to
those of the regular NMF with the I divergence.

3. Experiments
To confirm the effect of the proposed method, we evaluated the
cepstral distance (the mean square distance in the MFCC do-
main) between the estimated and clean speech signals and the
signal-to-distortion ratios (SDRs) of the estimated speech sig-
nals using the ATR503 database [15]. We chose the conven-
tional semi-supervised NMF method [8] for comparison.

We used four types of noise: white noise, babble noise,
measured museum noise and background music noise. The
test data were created by adding noise sources to clean speech
sources set with different signal-to-noise ratios (SNRs), rang-
ing from -15dB to 5dB. All the audio signals were monaural
and sampled at 16kHz. The STFT was computed using a Han-
ning window that was 32ms long with a 16ms overlap. In the
training process, the MFCC vectors were extracted from clean
speech samples uttered by 6 female and 4 male speakers (450
sentences for each speaker) and a GMM with 30 components
was trained using the EM algorithm. We set the dimension of
the MFCC vector at 13. In the separation process, we set λ at 1.
The parameters were initialized using a regular semi-supervised
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Figure 1: MFCC distance improvement with proposed method and
semi-supervised NMF. With white noise (left) and babble noise (right).
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Figure 2: MFCC distance improvement with proposed method and
semi-supervised NMF. With measured museum noise (left) and back-
ground music noise (right).
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Figure 3: SDR improvement with proposed method and semi-
supervised NMF. With white noise (left) and babble noise (right).
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Figure 4: SDR improvement with proposed method and semi-
supervised NMF. With measured museum noise (left) and background
music noise (right).

NMF that was run for 500 iterations. The enhanced speech sig-
nals were obtained using the Wiener filter constructed by the
estimated speech and noise spectrograms.

Fig. 1–4 show the results of the proposed method tested on
four types of noise. As the results show, the proposed method
yielded a 0.6 dB higher cepstral distance improvement in aver-
age and a slightly higher SDR improvement over conventional
semi-supervised NMF.

4. Conclusions
This paper proposed a novel approach for jointly enhancing
the spectral and cepstral sequences of noisy speech. The
method optimizes the combined objective function consisting
of an NMF-based model-fitting criterion defined in the spec-
tral domain and a Gaussian mixture model (GMM)-based prob-
ability distribution defined in the cepstral domain based on a
majorization-minimization scheme. Experimental results re-
vealed that the proposed method outperformed the conventional
NMF approach in terms of both SDR and cepstral distance.
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