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Abstract

In this paper, we test the applicability of state-of-the-art auto-
matic speech recognition (ASR) to predict phoneme confusions
in human listeners. Phoneme-specific response rates are ob-
tained from ASR based on deep neural networks (DNNs) and
from listening tests with six normal-hearing subjects. The mea-
sure for model quality is the correlation of phoneme recognition
accuracies obtained in ASR and in human speech recognition
(HSR). Various feature representations are used as input to the
DNN:ss to explore their relation to overall ASR performance and
model prediction power. Standard filterbank output and percep-
tual linear prediction (PLP) features result in best predictions,
with correlation coefficients reaching » = 0.9.

Index Terms: speech recognition, phoneme perception, models
of speech intelligibility

1. Introduction

The practical importance of adequate models of human speech
intelligibility has long been recognized and led to the devel-
opment of index-based measures such as the Articulation In-
dex (AI), the Speech Intelligibility Index (SII) and the Speech
Transmission Index (STI). These measures can be called macro-
scopic in the sense that they evaluate longer stretches of speech,
such as complete utterances. More recently, several studies have
addressed the challenge of modelling speech intelligibility on a
microscopic level, i.e. on a phoneme-by-phoneme basis, using
a variety of ASR techniques. Cooke [1], for instance, developed
a so-called “glimpsing model” that uses fragments of spectro-
temporal representations of speech in noise as input to a Hidden
Markov Model (HMM) ASR backend. Jiirgens et al. [2, 3], on
the other hand, used the output of an elaborate psychoacous-
tic model as input to a dynamic time warping (DTW) backend.
Finally, Marxer et al. [4] have presented a framework for the
evaluation of such microscopic models.

There are several areas where microscopic speech intelligi-
bility models can potentially be applied. Firstly, they can further
our knowledge of the processes involved in speech perception.
Secondly, they can be used in the development of speech coding
and transmission algorithms and in the development and fitting
of state-of-the-art hearing aids. Finally, they can provide guid-
ance in the improvement of ASR systems.

In the present study, building on earlier work by Meyer
and Kollmeier [5], four different feature types that are inspired
by properties of the human auditory system to varying degrees
were used as input to a DNN ASR backend. The resulting
phoneme confusion matrices were analysed and compared with
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phoneme confusion patterns obtained from human subjects per-
forming the same task. Two properties were investigated in de-
tail: overall recognition performance and correlation between
ASR and HSR performance. The latter can serve as a measure
of microscopic model quality, a higher correlation correspond-
ing to a greater similarity between ASR and HSR phoneme con-
fusion patterns.

It should be noted that the model proposed in the present
study is reference-free; i.e., neither are speech and noise sep-
arately known to the ASR system nor are any of the training
utterances also used during testing.

2. Methods
2.1. Speech database

The speech database used in this study was the Oldenburg
Logatome (OLLO) Corpus [6], which contains 150 different
logatomes. Logatomes are simple phoneme triplets with identi-
cal outer phonemes, either consonant-vowel-consonant (CVC)
or vowel-consonant-vowel (VCV). Each utterance was recorded
three times with five different intrinsic variations. This was re-
alized by asking the speakers to produce utterances with high
and low speaking effort, high and low speaking rate, and rising
pitch. Normal speaking style was also recorded as a reference
condition.

The database contains recordings from 50 speakers (10 Ger-
man speakers without regional dialect as well as speakers from
several regions in Germany and Belgium with different dialects
or accents) and a total of 133,403 utterances. The OLLO cor-
pus is freely available for research in HSR and ASR. It can be
downloaded from http://medi.uni-oldenburg.de/ollo/.

For the HSR listening experiments, a subset of the database
was compiled; this selection contained utterances from four
speakers without dialect (2 male, 2 female), spoken with six
different intrinsic variations. The HSR test set thus contained
3,600 items (150 logatomes x 4 speakers x 6 intrinsic varia-
tions). For the ASR experiments, the same four speakers were
used for testing, while the data from the remaining 46 speakers
was used for training. The phoneme combinations recorded for
the database are shown in Table 1.

2.2. Listening experiments

Six normal-hearing listeners (3 female, 3 male) between 18 and
35 years of age participated in the collection of the percep-
tual data. Participants were presented a series of logatomes in
speech-weighted noise [7] at an SNR of —6.2dB. Their task
was to identify the central phoneme in the VCV and CVC
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Central phoneme Outer phoneme
Phonemes /vl 1dl, 11, 1g/, I/, 1/, I/, /al, Iel, I/,
(VCV) m/, Ipl, Isl, Ifl, Itl, V1, Its/ /al, s/
Phonemes /lal, e/, I, 1], [l /v/, /d/, 11, /g/,
(CVC) la:/, le:/, i:/, lo:/, lu:/ /K, Ipl, Is/, It/

Table 1: Overview of the phonemes contained in the Oldenburg
Logatome Corpus. The initial and final phonemes were identi-
cal for all recorded logatomes. The combination of each central
phoneme with each of the outer phonemes results in 150 utter-
ances (70 VCV, 80 CVC).

logatomes, which were presented in random order. It should
be noted that due to this experimental design, only substitution
errors were possible (for the HSR as well as for the ASR exper-
iments). Listening experiments were conducted using closed
headphones (Sennheiser HDA 200) in a sound-insulated booth.
The utterances were presented at a comfortable listening level
(70 to 75dB SPL for most of the listeners). In total, 21,600
responses were collected.

2.3. Feature types and ASR setup

Almost all ASR systems incorporate properties of the human
auditory system in their choice of feature types to some ex-
tent; cf. [8] and [9] for reviews of the role that auditory
representation can play in ASR. Four different feature types
were used in the experiments: filterbank (FBank) features, mel-
frequency cepstral coefficients (MFCCs), perceptual linear pre-
diction (PLP) features, and Gabor filterbank (GBFB) features;
these feature types are in turn discussed below. In the present
work, most of the feature extraction for the ASR as well as the
ASR itself were performed with Kaldi [10].

The ASR experiments were performed at a number of dif-
ferent SNRs (again using speech-weighted noise [7]); training
and testing for each experiment were matched in terms of SNR.

2.4. FBank, MFCC and PLP features

FBank, MFCC [11] and PLP [12] features are the most com-
monly used methods in feature extraction. FBank features are
obtained by smoothing the short-time Fourier transform (STFT)
magnitude, which is typically computed every 10 ms using an
overlapping analysis window of 25 ms. They form the basis for
the other feature types in this study, and they have been found
to be a baseline that is superior to MFCCs when DNN-based
classification is performed.

For the computation of MFCCs, pre-emphasis is applied to
the signal before calculating the STFT. Each frame is then pro-
cessed by a mel filterbank (which approximates the response of
the human ear), compressed logarithmically and transformed to
cepstral parameters by using an inverse discrete cosine trans-
form. By selecting several (typically 12 or 13) lower cepstral
coefficients, only the coarse spectral structure is retained. This
processing results in mostly decorrelated features. In this study,
delta and double-delta features are appended to form the final
MEFCC feature vector, resulting in 39-dimensional feature vec-
tors.

PLP features incorporate further psychoacoustic con-
straints: Linear prediction coefficients are computed from a per-
ceptually weighted, nonlinearly compressed power spectrum.
The power spectrum is obtained with a bark filterbank with sub-
sequent equal-loudness pre-emphasis and a compression based
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on Steven’s power law (i.e., values are compressed by apply-
ing the cube root). The linear prediction coefficients are then
transformed to cepstral coefficients.

2.5. Spectro-temporal Gabor features

Gabor features are calculated by processing log mel-
spectrograms (i.e., sequences of FBank feature vectors over
time) of the input signal with a set of 2-dimensional modulation
filters. Filtering is performed by calculating the 2-dimensional
convolution of the spectrogram and the respective filter. The
time-aligned result of the convolution for all filters is used as a
feature vector.

Gabor filters are defined as the product of a complex sinu-
soidal function s(n, k) (with n and k denoting the time and fre-
quency index, respectively) and an envelope function h(n, k).
In this notation, the complex sinusoid is defined as

s(n, k) = exp [iwn(n — no) + iwk(k — ko)],

and the Hann function that we chose as envelope (with the pa-
rameters W,, and Wy, for the window length) is given by

h(n, k) = {0.5 — 0.5 cos (%)}

) . ) 271’(k — ko)
{0.5 0.5 - cos (7Wk+1 )} D

The periodicity of the carrier function is defined by the angular
frequencies wy and wy, which allow the Gabor function to be
tuned to particular directions of spectro-temporal modulation,
including diagonal modulations. For this study, an arrangement
in a filter bank [14, 15] was chosen due to the good results that
were obtained in various speech tasks with this specific imple-
mentation [13, 16, 17]. 657-dimensionsal features were calcu-
lated in Matlab, using the same algorithm and parameter set-
tings as in [13]. The filter set is shown in Fig. 1.
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Figure 1: Real components of Gabor filters used for the filter
bank, arranged by spectral temporal modulation frequencies.



2.6. DNN-based backend

All features were subsequently fed into a DNN/HMM classifier,
using the Kaldi speech recognition toolkit [10]. The DNN had
five hidden layers with 1024 units per layer. Input features were
spliced with a temporal context of 5 frames and used as input
to the DNN. A softmax transformation was applied to the DNN
output.

Training of the DNN was performed in two steps. In the
first step, an unsupervised pre-training of the network (function-
ing as a deep belief network, DBN) was performed to initialize
its parameters, followed by a supervised fine-tuning of the net-
work (now functioning as a standard feedforward DNN).

3. Results

In order to compare the features in terms of their recognition
performance, phoneme recognition accuracies were calculated
at SNR values between —39.2dB SNR and 17.8dB SNR at
steps of 3 dB for all four feature types. The results are shown in
Fig. 2.
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Figure 2: Phoneme recognition accuracy for different feature
types in DNN-based ASR systems for the Oldenburg Logatome
Corpus. (The HSR phoneme recognition accuracy at —6.2 dB
SNR was 73.0%.)

Over most of the SNR values, GBFB features resulted in
the highest recognition performance, followed by MFCC, PLP
and FBank features. The HSR phoneme recognition accuracy
at —6.2 dB SNR was at 73.0% still considerably higher than the
best ASR performance at the same SNR.

As for the assessment of model quality, correlation coeffi-
cients were calculated between the phoneme recognition accu-
racies of ASR and HSR, again at the same set of SNR values for
the ASR (HSR data was collected at a fixed SNR of —6.2 dB).
The results are shown in Fig. 3.

A maximum correlation coefficient is observed at —6.2 dB
SNR (for PLP features) or —9.2dB SNR (for all other feature
types). What is more, FBank and PLP features show the high-
est maximum correlation coefficient (r = 0.89,p < 0.001),
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Figure 3: Model quality in terms of correlation coefficients be-
tween HSR and ASR (only significant values are shown). HSR
data was collected at a fixed SNR (—6.2dB). The plot shows
prediction power of ASR phoneme recognition accuracies as a
function on the SNR used for ASR (in training and test).

followed by MFCC (r = 0.87,p < 0.001) and GBFB features
(r = 0.83,p < 0.001). Finally, at the very lowest SNRs, only
PLP features show stable, significant results.

To assess the question of how the differences in the correla-
tion coefficients between the feature types arise (or, to put it dif-
ferently, where the source of any dissimilarities between ASR
and HSR is), ASR phoneme recognition accuracies at —6.2 dB
SNR are plotted against HSR phoneme recognition accuracies
in Fig. 4.

At least at the given SNR, all four feature types show quite
similar recognition patterns and correlations between ASR and
HSR. This is in contrast to the findings in [5], where GBFB
features departed markedly from the general pattern displayed
by the other feature types.

4. Discussion

In the present study, auditory-inspired features were combined
with DNNs in an attempt to model human speech intelligibility.
Two measures were used for evaluation: phoneme recognition
accuracy, and correlation between ASR and HSR.

As for the correlation as a measure of model quality, com-
pared to the GMM/HMM-based approach in [5], the DNN-
based approach in the present study has proven to be superior,
since the SNR-mismatch (i.e. the mismatch between the SNR
of the ASR where the correlation is at its maximum, and the
SNR of the HSR) is far smaller or even non-existent (in [5],
the SNR-mismatch was 6.2dB for PLP features, while in the
present study, it is 0 dB for PLP features and 3 dB for the other
feature types). Also, the DNN-based approach is superior in
terms of correlation values (in [5], the maximum correlation co-
efficient was » = 0.84, while here, it was » = 0.89, again for
PLP as well as for FBank features). The perceptual training
presented in [5] seems not to be required in the DNN context.
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Figure 4: Comparison of ASR and HSR phoneme recognition accuracies at an SNR of —6.2 dB, obtained with different features. The
feature types are given in the lower right, the correlation coefficients in the upper left corner of each subplot. The dotted diagonal lines

represent lines through the origin with a slope of 1.

As for the phoneme recognition accuracy, GBFB features
perform best (although not nearly as well as the HSR), but
do not result in the best model prediction except for very low
SNRs. This is in line with the findings of [5], where an even
lower correlation of ASR and HSR recognition results was
found when using GBFB features.

Generally speaking, a trade-off was found in the present
work between recognition power on the one hand and model
quality on the other hand: Over all SNRs, GBFB features
showed the highest performance, followed by MFCC, PLP and
FBank features; model quality (as measured by ASR-HSR cor-
relation), on the other hand, was best for FBank and PLP fea-
tures, followed by MFCC and GBFB features.

We think it is for two reasons interesting to note that GBFB
features produce the least accurate phoneme predictions: First,
they were proposed based on psychoacoustic and physiological
evidence and hence should have a strong connection to audi-
tory processing. Second, the best average performance in ASR
is obtained with this feature type; hence, the model predictions
should be less affected by the fact that ASR in general is often
not on a par with human speech recognition (e.g., in extreme
cases ASR is approaching chance performance while human lis-
teners are still well above 50% phoneme error rate [18]).

This means that Gabor filterbank features exhibit a kind
of processing strategy that seems quite different from the av-
erage healthy auditory system. This will be investigated in fu-
ture research by dissecting the spectral, temporal, and spectro-
temporal components to analyze if one of these filter groups is
over-represented in the current feature design.

While the aim of the current study was to explore the ap-
plicability of the ASR system as a microscopic (i.e., phoneme-
level) model of human speech intelligibility, the system could
also be extended to predict sentence-level speech intelligibility
by including a suitable language model.

5. Summary

In this paper, we have investigated to what extent an ASR sys-
tem by itself can serve as a model of microscopic phoneme
confusions in human listeners. Deep learning methods have
had a very strong impact on speech research in the previous
years and have been established as a standard in ASR. We have
shown that using DNN-based classifiers can be beneficial for
creating models of human speech perception as well, with high
phoneme recognition accuracy correlation values between hu-
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man and machine recognition, while an SNR shift between ASR
and HSR test data is no longer required (in contrast to previous
work). What is more, the resulting speech intelligibility model
is reference-free, deriving its predictions from previously un-
known, noisy data. Although the goals in ASR and models of
HSR are different, we still found it surprising to observe that
the best ASR features performed worst for the perception model
and vice versa, reaching correlation values of » = 0.9.
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