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Abstract
Speech Enhancement is a challenging and important area of re-
search due to the many applications that depend on improved
signal quality. It is a pre-processing step of speech processing
systems and used for perceptually improving quality of speech
for humans. With recent advances in Deep Neural Networks
(DNN), deep Denoising Auto-Encoders have proved to be very
successful for speech enhancement. In this paper, we propose
a novel objective loss function, which takes into account the
perceptual quality of speech. We use that to train Perceptually-
Optimized Speech Denoising Auto-Encoders (POS-DAE). We
demonstrate the effectiveness of POS-DAE in a speech en-
hancement task. Further we introduce a two level DNN ar-
chitecture for denoising and enhancement. We show the ef-
fectiveness of the proposed methods for a high noise subset of
the QUT-NOISE-TIMIT database under mismatched noise con-
ditions. Experiments are conducted comparing the POS-DAE
against the Mean Square Error loss function using speech dis-
tortion, noise reduction and Perceptual Evaluation of Speech
Quality. We find that the proposed loss function and the new 2-
stage architecture give significant improvements in perceptual
speech quality measures and the improvements become more
significant for higher noise conditions.
Index Terms: Speech enhancement, Perception optimized
speech denoising auto-encoders, Deep Neural Networks, objec-
tive function, Denoising

1. Introduction
Speech signals encode a multitude of information and in addi-
tion to human consumption are used in a range of automated
speech processing tasks such as automatic speech recognition,
emotion recognition, voice activity detection, and speaker iden-
tification systems. Such systems require good quality input sig-
nals and thus speech enhancement systems that can reduce noise
are often employed as a pre-processing step. Speech enhance-
ment has also been used to increase speech intelligibility in ad-
verse noise conditions.

Speech Enhancement algorithms can be broadly classi-
fied into 4 categories [1]: (i) Spectral subtractive algorithms
work on the principle of estimating noise spectrum during
non-speech regions and subtracting it from the speech [2] [3];
(ii) Statistical-model-based algorithms are based on the prin-
ciple of stochastic estimation like Minimum Mean Square Er-
ror (MMSE) Estimation of Spectrum Amplitude [4], Maximum
Likelihood Estimation of magnitude of Speech Spectrum [5]
and Wiener filters [6]; (iii) Subspace algorithms assume the
clean signals to be a subspace of the noisy signal. Linear alge-
bra concepts like Singular Value Decomposition (SVD) [7] and
Karhunen-Loeve transform (KLT) [8] are used to decompose
the noisy speech signal to speech and noise; and, (iv) Binary
Masking algorithms apply a binary mask to the time-frequency

representation of noisy signal to eliminate certain frequency
bins by applying a threshold on Signal-to-Noise Ratio (SNR)
[9, 10]. Some spectral subtraction algorithms [2, 3] and Wiener
filter based techniques [6] introduced artifacts often referred to
as “musical noise”. However MMSE based techniques were
able to yield significantly reduced musical noise [4].

Recently, Neural Networks have shown significant gains
in many fields including in speech processing. The ability of
Neural Networks to model complex non-linear mapping func-
tions make them suitable for denoising tasks, thus efforts are
under way for applying neural networks for time-domain and
transform-domain mappings [11]. Time domain mappings em-
ploy training neural networks directly to map the noisy speech
to the clean speech. They assume that the hidden layer trans-
formations allow for the separation of noise from the speech.
The functional role of each of the layers has been studied in
[12, 13]. The transform domain technique initially transforms
the speech signal to a domain with more desirable perceptual
or recognition properties. The neural network is then trained to
map transformed noisy features to clean features which are then
transformed back to speech. It has been shown that log-spectral
features improve denoising [14]. Cepstral domain de-noising as
a pre-processing module has also improved ASR performance
[15]. Further, including additional parameters describing noise
and speech along with the noisy signal have proven advanta-
geous for denoising [14].

Neural Network architectures adopted for denoising are of-
ten referred to as Denoising Auto-Encoders (DAE). A DAE
is an auto-encoder which attempts to map the noisy inputs
to their clean versions. Architectures adopted for denoising
have remained more or less the same, even though changes in
training techniques like dropout [16, 17], noise aware training
[17, 16, 18], greedy layer-wise pre-training with fine tuning [19]
have proven to be beneficial. In Noise Aware Training (NAT), an
estimate of noise is provided along with the input [16, 17, 18].
DAE has proved to be more robust and achieved significant im-
provements both in terms of subjective and objective evalua-
tions without the presence of musical noise artifacts observed
in typical speech enhancement denoising algorithms [20].

Recurrent Neural Network (RNN) denoising referred as Re-
current Denoising Autoencoder (RDAE) has also shown signif-
icant performance gains [21, 22, 23]. RDAE can exploit the
temporal context information embedded in signals [21]. This
is particularly advantageous for non-stationary noise conditions
where traditional DAE performs poorly due to its inability to
exploit temporal information. Long Short-Term Memory DNNs
have also proven to perform better than RNN [21] for denoising.

In spite of the improvements provided by the DAE in appli-
cation to speech enhancement, it is known to cause additional
speech distortion due to over-smoothing and clipping of clean
speech due to the global MSE objective function. This effects
and limits the perceptual quality of denoised speech because
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Figure 1: Type-I architecture

of the observed muffling effect. Post-processing techniques
like global variance equalization are used to reduce the artifacts
[16, 24, 25, 26].

In this paper, we propose (i) a new objective function to re-
duce over-smoothing problem and (ii) introduce a 2-stage DNN
architecture to exploit speech activity information for speech
enhancement. The rest of the paper structure is as follows.
Sec. 2 describes in detail the proposed loss function and the
introduced architecture changes. Our system details, database
and evaluation criteria employed is provided in Sec. 3. Exper-
imental results and analysis is presented in Sec. 4. Relation to
prior work is discussed in Sec. 5 before concluding in Sec. 6.

2. Proposed System
2.1. Perception-Optimized Loss Function
DAE based speech enhancement techniques have shown
immense improvements in the field of speech enhancement
and are presently state-of-the-art. A traditional DAE uses a
typical MSE loss function as an objective to find the mapping
function between noisy and its clean version of the speech. The
MSE objective error function to be minimized by the stochastic
gradient algorithm is as follows:

E =
1

2
‖X − X̂‖22 (1)

where E is the error, X̂ is the output of the DNN during for-
ward propagation, X is the target label (clean speech - log filter
bank). The gradient of the error function to be back-propagated
(assuming the output layer is linear) can be derived:

∂E

∂X̂
=

∂

∂X̂

1

2
(X − X̂)2 = X̂ −X (2)

The gradient of MSE is thus a linear function. The linear prop-
erty of the gradient leads to the over-smoothing issue prevalent
in traditional DAE. This is because, the penalty for clipping off
a speech segment is same as the penalty for clipping off noise as
far as the euclidean distance from the target clean speech is the
same. This effect is more prevalent especially at lower SNRs
i.e., when the noise is significantly high compared to the speech
signals, the DAE clips off the speech segments at high noise
regions to optimize its global error function.

In terms of perceptual quality it is better to preserve speech
segments with residual error rather than clip speech segments
to remove noise. Based on this we design a loss function which
assigns high penalty against signal removal and retains the same
MSE error for noise removal. Thus we propose a new, percep-
tually motivated, loss function:

E =

{
1
2
‖X − X̂‖22 if X̂ ≥ X

1
2
‖X − X̂ + p‖22 if X̂ < X

(3)
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Figure 2: Type-II architecture

where p is the penalty assigned for speech clipping which is a
positive scalar constant. The resulting error gradient (assuming
linear output layer) is given by:

∂E

∂X̂
=

{
X̂ −X if X̂ ≥ X

X̂ −X − p if X̂ < X
(4)

When the DNN output is greater than the clean speech signal
(no clipping occurs), we use the traditional MSE objective and
when the DNN output is less than the target clean speech (clip-
ping occurs) we penalize by increasing the error by p. The DNN
training with the proposed loss function learns to approximate
the clean signal meanwhile avoids removing the desired signal.
Note that the proposed loss function equals the MSE loss func-
tion when penalty is set to zero (p = 0).

2.2. Proposed DNN architecture

Prior studies have shown that addition of noise statistics as
shown with Noise Aware Training (NAT) have yielded perfor-
mance benefits [16, 17, 18]. However, correct estimation of the
noise statistics used in NAT is critical.
Type I: Motivated by NAT, we propose a new 2 stage DNN
architecture for denoising and speech enhancement for higher
noise environments. The architecture involves a denoising stage
preceded by Speech Activity Detection DNN (SAD-DNN). In
this proposed framework, by providing the speech and non-
speech region markings, we enable the neural network to im-
plicitly compute the underlying noise statistics over the non-
speech regions, and to exploit these towards improved denois-
ing.
Type I-Module 1:The first stage comprises of a DNN trained to
predict speech activity on each frame of audio. This SAD-DNN
is trained using the cross-entropy loss function with softmax
output layer as a classification problem to predict 0 for regions
without speech and 1 for regions with speech.
Type I-Module 2:The second stage comprises of a DNN trained
to map the noisy speech signals to their clean version. This is
similar to the traditional DAE, with the following two excep-
tions (i) the output of the SAD-DNN becomes an additional in-
put to this denoising DNN together with the noisy signal, (ii) the
denoising DNN is trained using the newly proposed objective
function (opposed to MSE).
Type I Disjoint and Joint Training: During training, the two
stage system is trained as 2 independent DNN’s optimized for
their respective tasks. For the 2nd stage, the input features are
augmented with noisy versions of the true VAD labels, v1 and
v2 = 1 − v1, approximating the soft-max outputs of the first
stage system. A real system would never be certain, while our
reference labels are binary 0s (non speech regions) or 1s (for
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Train: CAFE-FOODCOURTB-1, CAFE-FOODCOURTB-2, CAR-
WINDOWNB-1, CAR-WINDOWNB-2, HOME-KITCHEN-1, HOME-
KITCHEN-2, REVERB-POOL-1, REVERB-POOL-2, STREET-CITY-
1, STREET-CITY-2.

Test: CAFE-CAFE-1, CAFE-CAFE-2, CAR-WINUPB-1, CAR-WINUPB-
2, HOME-LIVINGB-1, HOME-LIVINGB-2, REVERB-CARPARK-1,
REVERB-CARPARK-2, STREET-KG-1, STREET-KG-2.

Group SNR TotalClean -5dB -10dB
Train 1000 733 767 2500
Test 500 243 257 1000

Table 1: Database Summary: At the top we see the conditions
used for training and testing while below we list the number of
utterances employed as train and test sets.

speech regions). As a better initialization point we use the log-
arithm of uniformly distributed random values in the intervals
[0,0.5] and (0.5,1] to indicate non-speech and speech regions
respectively. Next, the two modules are concatenated and re-
trained jointly. Additionally, we replace the softmax output
layer with a sigmoid layer to enable back-propagation. The con-
catenated DNN is fine-tuned by joint optimization of the two
modules with the newly proposed loss function until conver-
gence. We refer to this system, as in Fig. 1, as Type-I.
Type II: We also experiment on relaxing the information bot-
tleneck between the two layers. The proposed Type I archi-
tecture has a bottleneck from module 1 to module 2, limiting
effective back-propagation of the errors. To tackle this we pro-
pose a bottleneck expansion in the connectivity of the first and
second stages. This proposed, Type II, architecture uses repli-
cation of the output layer of module 1 to expand the informa-
tion flow to module 2 by widening the number of connections
(to 50 dim.) as shown in figure 2, i.e., the 2-dimensional soft-
max layer from the module 1 is first replaced by sigmoids, and
additional sigmoid units are concatenated to the two sigmoids
initialized with identical weights and biases. The bottleneck
between the 2 modules no longer exists. This enables for bet-
ter back-propagation of errors and adds more flexibility during
joint optimization.

3. Experimental Setup
3.1. Database

We test our system using the high noise subset of the QUT-
NOISE-TIMIT corpus [27]. The QUT-NOISE-TIMIT corpus
consists of 600 hours of noisy speech sequences created by
mixing 10 hours of noise with TIMIT clean speech [28]. The
noise database consists of 5 different background noise sce-
narios recorded at 10 unique locations. The resulting mixed
speech sequences are classified into three categories: (i) low
noise (15dB and 10dB SNRs), (ii) medium noise (5dB and 0dB
SNRs) and (iii) high noise (-5dB and -10dB SNRs). In this
study, only the high noise subset is considered. The noise sce-
narios are cafe, home, street, car and reverberation, each with
2 unique sessions and 2 unique locations. The database was
divided into 2 parts for training and testing. The summary of
the database and the division we used for our experiments are
in Table 1. The noise environments used for training are as in
Table 1 top, while the division of dataset in terms of number of
utterances and noise levels are shown at the bottom. As can be
seen the train and test are mutually exclusive.

3.2. System Description

Baseline: A typical DAE based speech enhancement system as
used in [19, 20] forms our baseline. In our setup we use log-
power spectral features due to its perceptual relevant properties

[14] similar to the setup of [16, 18]. Log-power spectral fea-
tures of dimension 257 was used along with left and right con-
text of 4. Two hidden layers with sigmoid activation functions
each of dimension 2000 were used for training. The number
of hidden layers were restricted to 2 since having more layers
was shown to provide insignificant improvements [19]. A linear
output layer with MSE loss function was used.
POS-DAE: For module I, speech activity detection, we use a
DNN with 2 hidden layers. The first hidden layer comprises of
a Long Short-Term Memory (LSTM) with tanh activation func-
tions and the second layer a feed-forward DNN with rectified
linear units (RELU) both of dimension 50. Module II shares a
similar architecture to the baseline system.
Implementation: We modified and used the customized version
of the KALDI toolkit [29] for all our experiments. Details of
the neural network training and algorithms used in KALDI can
be found in [30]. The proposed custom objective function was
implemented in CUDA to enable GPU implementation.

3.3. Speech Reconstruction
For evaluation purposes, to compute the perceptual evaluation
of speech quality (PESQ), we need the waveform to be re-
constructed from the log-power spectrogram features. To re-
construct, we apply the exponential operation to the log-power
spectral features and take an inverse transformation using the
phase signal derived from the noisy speech similar to [16, 19].
Using the phase information from the noisy speech for the
reconstruction of the enhanced speech is justified because of
the insensitivity of the human ear to small phase distortions
in speech [11]. Finally the waveform is reconstructed using
overlap-add synthesis. To make a fair assessment of the per-
formance, the reference clean signal is decomposed and recon-
structed in the same way.

3.4. Evaluation Measures
We present our results in terms of the objective measures of
(i) Noise Reduction, (ii) Speech Distortion and (iii) Percep-
tual Evaluation of Speech Quality (PESQ) which are all well
adopted in the speech enhancement community. Noise reduc-
tion (NR) and Speech Distortion (SD) are given by:

NR = 1
N×d

N∑
i=1

|X̂i − Yi| (5) SD = 1
N×d

N∑
i=1

|X̂i −Xi| (6)

where N is the number of testing samples, d is the feature di-
mension, X̂i is the enhanced output from DNN, Xi is the target
clean speech features, Yi is the noisy input features. PESQ is
also adopted as it is said to have high correlation with the mean
opinion score (MOS) [31]. PESQ is presented as a score be-
tween -0.5 to 4.5, where -0.5 and 4.5 represents lower bound
and higher bound for speech quality respectively. Details of
PESQ computation can be found in [31].

4. Experimental Results and Discussions
First, we present comparison of the effectiveness of the intro-
duced loss function with identical architectures. Next, we mo-
tivate the proposed 2-stage architecture with an oracle Speech
Activity Detection first layer. Then, we present results of the

Penalty 2 4 6 8 10

PESQ -5dB 1.848 1.979 2.054 2.102 2.147
-10dB 1.749 1.885 1.956 1.997 2.025

Table 2: Effect of penalty on PESQ for POS-DAE
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System Noise Reduction Speech Distortion PESQ
-5dB -10dB -5dB -10dB -5dB -10dB

Baseline DAE 6.867 8.079 3.541 3.956 1.693 1.478
Proposed POS-DAE 2.451 2.824 5.593 6.394 2.147 2.025

DAE + Oracle SAD 7.179 8.45 1.654 1.654 2.588 2.292
POS-DAE + Oracle SAD 4.687 5.696 3.192 3.365 2.538 2.432

Type-I Architecture DAE 6.309 7.589 2.924 3.380 2.018 1.857
Type-II Architecture DAE 6.336 7.571 2.905 3.364 2.022 1.856
Type-I Architecture POS-DAE 3.256 3.570 4.933 5.803 2.071 1.951
Type-II Architecture POS-DAE 3.157 3.548 4.954 5.796 2.071 1.951

Table 3: Performance evaluation of Speech Enhancement using Noise Reduction, Speech Distortion and PESQ

proposed 2-stage architecture with and without the introduced
loss function.

4.1. Effect of Proposed Objective Loss Function
Effect of Penalty: We evaluated the performance of the POS-
DAE system for different values of penalty p and we observe
that higher penalty gives better PESQ in Table 2. This provides
initial validation for the proposed loss measure. For subsequent
experiments, without optimizing, we use a penalty of 10.
Results: As seen from Table 3-top, we find that the traditional
DAE shows promising performance in terms of objective mea-
sures through speech distortion and noise reduction. However,
there is a degradation in PESQ score. The new objective func-
tion shows sub-optimal performance in terms of objective mea-
sures compared to the traditional DAE, but more importantly
shows significant improvements in PESQ values. This indi-
cates that the traditional DAE and the MSE objective function
achieves better objective measures sacrificing the perceptual
quality of speech. The difference in the objective measures vali-
dates the notion that MSE-DAE introduces over-smoothing and
clipping of speech signals, thereby supporting the motivation
and effectiveness of the POS-DAE objective function. More-
over, we see that the POS-DAE provides better improvements
for lower SNR -10dB signals in terms of PESQ, where we ex-
pect the over-smoothing to be more severe.

4.2. Effect of Augmentation of Oracle SAD labels
Table 3-middle shows the improvements achieved by provid-
ing oracle speech activity regions to both DAE (baseline) and
POS-DAE systems. We see significant improvements in terms
of both objective and perceptual evaluation measures for both
systems over the baseline. POS-DAE achieves the best noise
reduction with the least speech distortion, and best perceptual
quality. This becomes more pronounced for lower SNR of -
10dB. The results encourage us to use POS-DAE and the 2-
stage architecture in conjunction for complementary results.

4.3. Evaluation of Proposed 2-Stage Architecture
The 2-stage architecture replaces the Oracle SAD labels with a
SAD-DNN system as described in Section 2.2.
Type I: The results in table 3 are obtained after jointly training
the 2 stages. The results show a significant improvement over
the baseline for Type I architecture applied to DAE. Further
improvements in PESQ values are obtained by using a POS-
DAE. We again observe significant improvement for low SNR
-10dB compared to the DAE system consistent with the find-
ings from oracle SAD experiments. This stresses the fact that
POS-DAE performs better at low SNR environment albeit pro-
viding slight improvements for comparatively higher SNR en-
vironments over the baseline DAE systems.

Type II: Again, the results for Type II are an improvement over
the baseline. However, in our experiments we found that there
was no significant improvements provided by Type II over Type
I, both in terms of objective measures and PESQ values. We be-
lieve this is because the increased parameterization is not being
exploited during training due to the already good initialization
point and the limited (for such a large DNN) training data.

5. Relation to Prior Work
In [32], a weighted denoising autoencoder (WDA) was pro-
posed by altering the MSE loss function with weights associ-
ated with different frequency components of the spectrum. Our
system could be used in conjunction with such a loss function
to further take advantages of the speech spectrum. In [18], a
2-level architecture was proposed with the first stage trained to
predict a time-frequency (T-F) binary mask for noise dominance
and speech dominance. In our system, we instead train a SAD
system and have the following advantages: (i) there is no need
to explicitly estimate the noisy spectra as in a T-F mask sys-
tem (ii) we do not need to set any manual thresholding, since
our second stage is exploiting soft-labels of speech activity, and
(iii) we proposed jointly training the two modules to expand
relevant and contextual information transfer.

6. Conclusions & Future Direction
We introduced a new loss function designed to take into consid-
eration the perceptual speech quality during DAE training and
addressed the challenging problem of speech enhancement at
low SNR. The proposed Perception Optimized Speech Denois-
ing system was demonstrated to give better PESQ values than a
traditional MSE based DAE systems. The difference in the ob-
jective measures indicated that the problem of over-smoothing
apparent in MSE-DAE systems was mediated by the POS-DAE
system. We also proposed two different architectures, based
on jointly training SAD and denoising systems which proved
to be better than the traditional DAE systems. Even though
the jointly-optimized Type-II architecture provided no signifi-
cant gains over Type-I, this is likely due to the relatively limited
training data for such a big network.

In our system, the penalty factor assigned in POS-DAE sys-
tems is a simple positive scalar constant. In the future, POS-
DAE could be further extended by using a multi-dimensional
penalty, corresponding for instance to different penalties per
frequency band. For instance, we could assign a lesser penalty
for over-smoothing, higher frequency components that contain
less speech information. Further, our system could be used in
conjunction with WDA introduced in [32] to add more con-
straints to the loss function and customize it to the application
of speech enhancement.
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