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Abstract 
We describe the ability of LNCC features (Locally 
Normalized Cepstral Coefficients) to improve speaker 
recognition accuracy in highly reverberant environments.  We 
used a realistic test environment, in which we changed the 
number and nature of reflective surfaces in the room, creating 
four increasingly reverberant times from approximately 1 to 9 
seconds. In this room, we re-recorded reverberated versions of 
the Yoho speaker verification corpus. The recordings were 
made using four speaker-to-microphone distances, from 0.32m 
to 2.56m.  Experimental results for a speaker verification task 
suggest that LNCC features are an attractive alternative to 
MFCC features under such reverberant conditions, as they 
were observed to improve verification accuracy compared to 
baseline MFCC features in all cases where the reverberation 
time exceeded 1 second or with a greater speaker-microphone 
distance (i.e. 2.56 m).  
Index Terms: LNCC, reverberation, distant speaker 
microphone, speaker verification. 

1. Introduction 
For many state-of-the-art algorithms, the quality of acoustic 
conditions for speech communication in enclosed spaces 
including reverberation is important [1-2]. Inside such spaces, 
considered as a transmission channel, a time varying speech 
signal emitted from a speaker may reach a listener through 
several paths. In general the speech reaching the listener is not 
an ideal copy of the original speech [3]. Propagated sound is 
inevitably reflected by nearby surfaces [4] resulting in higher- 
order reflections [5]. This superposition is perceived not as 
individual echoes, but as a single acoustic entity, described as 
reverberation [6-7]. The auditory system distinguishes 
between direct sound, early lateral reflections and late 
reverberation [8,9]. Direct sound is heard within an interval of 
25-35ms. The early reflections [10-11] have arrival times of 
less than 50ms [12-13]. Such reflections increase the effective 
SNR and improve the intelligibility of speech (the amount of 
an utterance that is understood) [14-15]. Late reverberation 
components, with arrival times greater than 50-100ms, 
degrade speech intelligibility [10]. The integration of the direct 

sound, early reflections, and late reverberation, is 
accomplished in the brain [16,17]. Reverberant distortion 
increases with the speaker-to-listener distance, r [18].  The 
direct sound level decreases by 6 dB for every doubling of r 
[18], and D/R, the ratio of energy in the direct to reverberant 
field, decreases by 6 dB for every doubling of distance:      

            

                 (1) 

where rc is the critical distance of the room, at which D/R 
equals 0 dB (direct and reverberant energies are equal) [19].  
The value of rc is calculated as in [19-20]: 
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where V and RT are the volume (m3) and reverberation time 
(s), respectively; and G is the directivity factor of the source. 
The directivity index DI is measured in a hemi-anechoic room, 
and its value is obtained according to [21]. Thus, by using: 

                                                  (3) 

G is calculated for the frequencies 500, 1kHz, and 2kHz 
[5,22], using the equation [23]: 

                      (4) 
Following [24], the decay rate τ of the impulse response curve 
of a listening space is linearly proportional to RT in seconds 
[25]: 

                                                                       (5) 

Theoretically, the decay curve is calculated using the root-
mean-squared (rms) pressure in a time window from 0 to T 
and is given by [4]:  

                                                    (6) 

The STI index [26], a predictor of intelligibility, varies in the 
range from 0 (bad) to 1 (excellent) and is calculated following 
[27]. Speech de-reverberation algorithms are classified in four 
categories: signal-based, feature-based, model-based, and 
decoder-based [2]. Feature-based approaches include RASTA 
filtering [28] and Cepstral Mean Normalization (CMN) [29]. 
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In this paper, our main motivation is to compare LNCC with 
MFCC combined CMN or RASTA processing. We are not 
attempting to exhaustively compare all known techniques to 
address reverberation. Most research on speech recognition 
and verification in reverberant environments has been carried 
out by modifying existing databases using simulation, and the 
effect of the speaker-microphone distance has typically been 
neglected. The purpose of the current paper is to assess the 
influence of reverberant distortion on LNCC [30] including 
the effect of speaker-microphone distance. The use of LNCC 
is motivated by the robustness observed for normal-hearing 
listeners in adapting to listening spaces with moderate 
amounts of reverberation [7,22]. In the frequency domain (Fig. 
1), a local normalization is performed by dividing the outputs 
of two filters: (1) the numerator filter is triangular, and 
essentially the same as that used to derive MFCC features 
[31]; (2) the denominator filter captures energy at adjacent 
frequencies. They are defined by the equations (7) and (8): 
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For any auditory channel i, the locally normalized channel 
energy LNi is achieved by dividing: 

                                                      (9) 

where Num_Energyi and Den_Energyi represent the energy 
captured by the filters in Eq. (7) and Eq. (8). LNCC features 
have already been evaluated for robustness with respect to 
spectral tilt in transmission channels and additive noise [30, 
31].  Figure 2 plots spectral envelopes of speech recorded in 
Room 1 at a distance 2.56 m from the sound source, estimated 
by the LN filterbank, and compares this to the corresponding 
response of the conventional Mel-scale filterbank typically 
used to derive MFCCs [32]. 
 

2. Experimental procedures 

2.1. Characteristics of the reverberation chamber  

We constructed several reverberant environments and re-
recorded sequentially with a single microphone, different 
versions of the Yoho speech corpus [33].  The room volume 
and its total interior surface are 203 m3 and 215 m2, 
respectively. The longest diagonal distance is 11 m, as seen in 
Fig. 3. Four different reverberant fields were created by 
varying the number and nature of absorbent objects and 
surfaces in a single room. We label these virtual rooms as 
Room 1, Room 2, Room 3 and Room 4: highly reverberant, 
reverberant, moderately reverberant, and mildly reverberant, 
respectively. The RT values of the chamber, as a function of 
frequency, were measured according to [34] (see Fig. 4). Four 
distances between the playback loudspeaker (Bose V-201) and 
microphone (Shure PG-81) r are used: 0.32, 0.64, 1.28 and 
2.56 m. In each r, RT is measured with a sound level meter 
(Cesva SC310) and software (Cesva Capture Studio). The 

averaged values of RT vary from 0.9, 2.0, 3.0 to 9.3s for 
Rooms 4, 3, 2 and 1, respectively (averaged values at 500, 
1000, and 2000Hz bands [5,22]). The acoustic indices selected 
to quantify the intelligibility are: RT, SNR, STI, and D/R, as 
listed in Table 1.  

 
Figure 1: Frequency responses of numerator (solid line) and 

denominator (dashed line) filters. 
 

 
Figure 2: Spectral envelopes for a single frame of clean voiced 
speech (solid line) using Mel-scale filterbank (upper figure), 

and LN filterbank (lower figure). In solid lines, responses 
without reverberation; dashed lines, with reverberation. 

 

 
Figure 3: Schematic for the reverberation chamber. 

2.1.1. Schematic for the experimental setup 

The experimental setup is illustrated in Fig. 3. The room 
height is an average height above the source because the 
ceiling surface is an inclined plane. Fig. 5 is a calculated 
example of Eq. (6) obtained from room impulse responses 
measured in this reverberation room. For example, as is seen 

LNi =
Num_Energyi
Den_Energyi
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in Fig. 5, the slope of the decay curve for Room 1 describes a 
reverberation time much longer than that of Room 4. 

 
Figure 4: Averaged values of the reverberation times as a 

function of frequency. 
 

 
Figure 5: Curves of decay level for each room. 

2.1.2. Speaker verification experiments 

LNCC performance under reverberant distortion was tested 
using a text-independent speaker verification paradigm. All 
experiments used the entire Yoho speech corpus. Features 
were extracted using LNCC and MFCC processing. The frame 
duration in all cases was 25 ms with a 50% overlap. A 
frequency range from 200 to 3860 Hz was covered by 14 
triangular filters uniformly arranged on a Bark scale, in the 
case of MFCCs, and in the case of the LNCC features they are 
computed using 28 pairs of numerator and denominator filters 
uniformly arranged on a Bark scale, with dmin = 0.001, and B 
= 3.5 Barks. The baseline system for clean speech produces 
0.56% and 0.71% EER with MFCC and LNCC features, 
respectively. These experiments were carried out using the 
ALIZE library and LIA-SpkDet toolkit [35]. This software is 
based on a classical Gaussian Mixture Model-Universal 
Background Model (GMM-UBM) speaker verification system 
[36]. The Universal Background Model (UBM) is trained 
using background impostor speakers, with 256 Gaussian 
components using diagonal covariance matrices. A speaker-
dependent Gaussian Mixture Model (GMM) is generated for 
each speaker by employing maximum a posteriori (MAP) 
adaptation [36].  

3. Speaker verification results  

3.1. Room 1: Highly reverberant 

Figure 6 shows Equal Error Rates (EERs) obtained using 
LNCC features or standard MFCC features, in highly 

reverberant conditions. Results for MFCC or LNCC each in 
combination with CMN or RASTA are also shown. 
LNCC features provide relative reductions in EER as high as 
31.1%, 25.4%, 20.6%, and 7.2%, compared to MFCC, at 
speaker-microphone distances 0.32, 0.64, 1.28, and 2.56m, 
respectively. These results suggest that LNCC is more robust 
than MFCC to the highly reverberant condition. When CMN is 
applied to MFCC or LNCC, there is no reduction in EER, 
compared to MFCC or LNCC alone. When RASTA is applied 
to LNCC or MFCC, instead of CMN, relative reductions in 
EER are as high as 33.2% at a speaker-microphone distance 
0.64 m for LNCC+RASTA over MFCC+RASTA. We observe 
that LNCC benefits from this additional normalization as 
much as MFCC does.  
 

Table 1. Reverberation and intelligibility conditions.  

Room r    
(m) 

rc    
(m) 

RT    
(s) 

SNR  
(dB) STI D/R  

(dB) 

1 

0.32 0.62 9.35 4.2 0.54 5.8 
0.64 0.63 9.24 1.4 0.44 -0.2 
1.28 0.63 9.28 0.4 0.34 -6.2 
2.56 0.62 9.43 -0.2 0.29 -12.3 

2 

0.32 1.09 3.05 7 0.66 10.7 
0.64 1.09 3.10 3.5 0.60 4.6 
1.28 1.09 3.08 1 0.51 -1.4 
2.56 1.09 3.07 -1 0.41 -7.4 

3 

0.32 1.35 2.00 9.7 0.77 12.5 
0.64 1.33 2.06 5.0 0.7 6.4 
1.28 1.36 1.98 1.2 0.59 0.5 
2.56 1.34 2.04 -0.7 0.53 -5.6 

4 

0.32 2.01 0.85 14.1 0.88 16.2 
0.64 1.93 0.98 8.7 0.85 9.6 
1.28 1.94 0.97 4.0 0.79 3.6 
2.56 1.90 1.01 0.3 0.69 -2.6 

 

 
Figure 6: Comparison of performance in Room 1. 

 

3.2. Room 2: Reverberant   

Figure 7 summarizes the results in Room 2. Again, LNCC 
provides relative reductions in EER, over MFCC, this time of 
36.2%, 32.1%, 19.4%, and 13.28% at speaker-microphone 
distances 0.32, 0.64, 1.28, and 2.56m. CMN is not effective in 
combination with MFCC or LNCC. LNCC+RASTA 
outperforms MFCC, MFCC+CMN, and MFCC + RASTA.  

3.3. Room 3: Moderately reverberant  

Figure 8 presents EERs in Room 3. LNCC provides relative 
reductions in EER over MFCC of 28.5%, 19.2%, 18.9%, and 
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19.8%, for speaker-microphone distances 0.32, 0.64, 1.28, and 
2.56m. At 0.32m, LNCC (+CMN or +RASTA) is no longer 
superior to MFCC (+CMN or +RASTA). 

3.4.  Room 4: Mildly reverberant 

Figure 9 summarizes the performance of LNCC features under 
mild reverberation. At 0.32 and 0.64 m, LNCC (+CMN or 
+RASTA) is no longer superior to MFCC (+CMN or 
+RASTA). Nevertheless, LNCC still provides relative 
reductions over standard MFCC features of between 5.6% and 
22.9%, for larger speaker-microphone distances (1.28 and 
2.56m). For the milder conditions of reverberation (at closer 
speaker-microphone distances) LNCC does not improve 
speaker recognition accuracy.  These results are replotted as a 
function of D/R in Fig. 10. 
 

 
Figure 7: Comparison of performance in Room 2. 

 

 
Figure 8: Comparison of performance in Room 3. 

 
 

 
Figure 9: Comparison of performance in Room 4. 

 

 
 

Figure 10: EER (%) versus D/R (dB). 

4. Discussion 
By manipulating the reverberation time of a room, and re-
recording data at several speaker-microphone distances, we 
have been able to measure the impact of reverberation typical 
of listening spaces commonly used for spoken communication. 
In general, we found that LNCC features produce lower EERs 
than MFCC features (each in combination with either CMN or 
RASTA) in a speaker verification task, under most conditions 
considered, with the exception of those conditions with the 
least reverberation and closest speaker-microphone distances. 
The use of LNCC features alone, at 2.56 m, provides relative 
reductions in EER, over standard MFCC of 22.9%, 19.8, 
13.3%, and 7.2%, in Rooms 4, 3, 2 and 1, respectively. 

5. Conclusions 
Our speaker-verification results using the Yoho database 
demonstrate that LNCC is more robust than MFCC for all 
speaker-microphone distances in Rooms 1, 2 and 3. We 
conclude that for the majority of speaker-microphone 
distances, LNCCs provide better performance than MFCCs. 
Observations on the extent to which CMN and RASTA 
improve accuracy when added to LNCC processing are mixed, 
although in general RASTA is helpful and CMN is not.  We 
also note that, independent of reverberation time, in all four 
reverberant Rooms, at the largest speaker-microphone distance 
of 2.56 m (where the indexes SNR, STI, as well as D/R 
correspond to the poorest intelligibility for speech), LNCCs 
alone with no compensation are more robust than standard 
MFCCs. We conclude that LNCC features can be an attractive 
alternative to MFCC, which can also be applied in other tasks 
of pattern recognition where occurs reverberant distortions, 
poor intelligibility, or when the speaker-microphone distance 
is varying. LNCCs appear to be particularly attractive features 
for distant speech processing in a variety of real, reverberant 
environments. 
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