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Abstract 
This paper describes a low-resource approach to a Query-by-
Example task, where spoken queries must be matched in a large 
dataset of spoken documents sometimes in complex or non-
exact ways. Our approach tackles these complex match cases 
by using Dynamic Time Warping to obtain alternative paths that 
account for reordering of words, small extra content and small 
lexical variations. We also report certain advances on 
calibration and fusion of sub-systems that improve overall 
results, such as manipulating the score distribution per query 
and using an average posteriorgram distance matrix as an extra 
sub-system. Results are evaluated on the MediaEval task of 
Query-by-Example Search on Speech (QUESST). For this task, 
the language of the audio being searched is almost irrelevant, 
approaching the use case scenario to a language of very low 
resources. For that, we use as features the posterior probabilities 
obtained from five phonetic recognizers trained with five 
different languages. 
Index Terms: Query-by-example, Spoken term detection, 
Dynamic Time Warping 

1. Introduction 
The task of searching large audio databases with a small query 
is commonly known as Spoken Term Detection (STD). It 
usually involves a text-based query and a spoken dataset of one 
language for which there are sufficient resources to build 
Automatic Speech Recognition (ASR) systems, resulting in a 
word-level indexing for the audio documents. Certain 
challenges have attracted research on the STD task, such as the 
NIST 2006 STD Evaluation [1] and the 2013 Open Keyword 
Spotting Evaluation [2]. 

The Query-by-Example (QbE) task differs from STD as the 
query must be speech based and no textual information is 
considered. Typically, there are no attempts to recognize word-
level tokens, leading to a problem of finding audio using audio 
[3]–[6]. The need for QbE is found when the searched language 
is unknown or has few resources, or if multilingual databases 
are searched. The techniques for matching spoken queries to 
larger speech files usually involve the detection of 
unconstrained audio tokens in the data (zero-resources) [5] or 
the use of phonetic recognizers for other languages (low-
resources) with the extraction of features such as posterior 
probabilities of phonemes [3], [4]. Most works use classical 
techniques such as Dynamic Time Warping (DTW) [3] or 
Acoustic Keyword Spotting (AKWS) [7]. 

The MediaEval task of Query by Example Search on 
Speech (QUESST) [8]–[10] proposes a suitable benchmark to 
evaluate QbE systems. With two editions – 2014 and 2015 – it 
distinguishes itself from other evaluations by introducing 

complex query-reference matches. These can be occurrences 
where a portion of the beginning or the end of the query may 
not match (small lexical variations), small extra content may be 
present between words on query or reference, or the searched 
words may appear in different order. The 2015’s edition also 
added new relevant problems to tackle, as the audio can have 
different acoustic conditions with significant background or 
intermittent noise as well as reverberation, and there are queries 
that originate from spontaneous requests. These conditions 
further approach real case scenarios of a query search 
application, which is one of the underlying motivations of the 
challenge. The dataset is also multilingual and of mixed 
speaking styles, further increasing the challenging aspect of the 
task. A spoken document retrieval (SDR) solution is expected, 
as it is only necessary to retrieve the document that matches the 
query. 

Systems for QbE search keep improving with recent 
advances such as combining spectral acoustic and temporal 
acoustic information [11]; combining a high number of 
subsystems using both AKWS and DTW and using bottleneck 
features of neural networks as input [12]; new distance 
normalization techniques [13] and several approaches to system 
fusion and calibration [14]. Some attempts have been made to 
address complex query types, by segmenting the query in some 
way such as using a moving window [15] or splitting the query 
in the middle [16]. Our approach is based on modifying the 
DTW algorithm to allow paths to be created in ways that 
conform to the complex types, which has shown success in 
improving overall results [17], [18]. 

For the presented methods, we reduce severe background 
noise by applying spectral subtraction, use five phonetic 
recognizers to extract posteriorgrams as features, improve and 
add modifications to DTW for complex query search (filler 
inside a query being the novelty), and implement improved 
fusion and calibration methods.  

2. Dataset 
The system described in this paper is evaluated with the 
QUESST 2015 dataset [9], which amounts to 18 hours of speech 
in 6 languages: Albanian, Romanian, Slovak, Czech, 
Portuguese and code switched Mandarin/English. 11662 
recordings with an 8 kHz sampling rate were extracted from 
different sources of larger recordings such as broadcast news, 
lectures, read speech and conversations. The various languages 
are randomly distributed in the data, and no information is given 
to the participant about which language an utterance belongs to, 
requiring robust unsupervised approaches. 

Queries were manually recorded in isolation by different 
speakers, in separate conditions from the utterances, emulating 
the use of a retrieval system with speech. Two sets of queries 
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were created (445 for development and 447 for evaluation) and 
three types of queries were defined, exhibiting varying 
matching conditions to the utterances: 

� Type 1 (T1): exact matches. The query should match the 
lexical form of incidences in the utterances without any 
filler content. For example, “brown elephant” as a query 

would match the utterance “The brown elephant is 

running”. 
� Type 2 (T2): non-exact matches. Queries may have small 

lexical variations at the beginning or end compared to the 
occurrences in the search audio. An example would be the 
query “philosopher” matching an utterance containing 

“philosophy” (or vice-versa in this case). Queries with 
two or more words may have the words appear in a 
different order in the searched audio. Also, small 
irrelevant filler content in the utterances may be present 
(but not in the query). The matching possibilities of the 
query “brown elephant” in these cases are, for example, 

“elephant brown”, “elephant is brown”, “brown the 

elephant”. 
� Type 3 (T3): conversational speech. Queries originate 

from spontaneous, more natural, requests, contrarily to T1 
and T2 where queries are dictated. They may have the 
same non-exact match conditions as T2 queries, and may 
additionally present small filler content between words. 

3. System Description 

3.1. Noise filtering 
First, we apply a high pass filter to the audio signals to remove 
low frequency artefacts. Then, to tackle the existence of 
substantial stationary background noise in both queries and 
reference audio, we apply spectral subtraction (SS) to noisy 
signals (not performed for high SNR signals, which worsened 
results). This implies a careful selection of samples of noise 
from an utterance. For this, we analyze the averaged log Energy 
of the signal, consider only values above -60dB, and determine 
high and low levels through median of quartiles as exemplified 
in Figure 1. Then, we calculate a threshold below which 
segments of more than 100ms are selected as “noise” samples, 

whose mean spectrum will be subtracted from the whole signal. 
Using dithering (white noise) to counterbalance the musical 
noise effect due to SS didn’t help. Nothing was specifically 

performed for reverberation or intermittent noise. 

 
Figure 1: Energy (dB) for one signal, with median of 

upper and lower quartiles as horizontal lines. 

3.2. Phonetic Recognizers 
The next step is to run phonetic recognition on all audio and 
queries and extract frame-wise posterior probabilities of 
phonemes. An available external tool based on neural networks 
and long temporal context, the phoneme recognizers from Brno 

University of Technology (BUT) [19], is used. The three 
available systems for 8kHz audio, trained with SpeechDat-E 
databases [20], are employed: Czech (CZ), Hungarian (HU) and 
Russian (RU). Additionally, two new systems are trained with 
the same framework: English (EN - using TIMIT and Resource 
Management databases) and European Portuguese (PT - using 
annotated broadcast news data and a dataset of command words 
and sentences). Using different languages implies dealing with 
different sets of phonemes, and the fusion of the results will 
better describe the similarities between what is said in a query 
and the searched audio. This makes our system a low-resource 
one. 

All de-noised queries and audio files were run through the 
5 systems, extracting frame-wise state-level posterior 
probabilities (with 3 states per phoneme) to be analyzed 
separately. Figure 2 shows an example of the obtained 
posteriorgram for a clean query by using the Czech phonetic 
recognizer. 

 
Figure 2: State-level posterior probabilities for one 

query from the Czech recognizer. 

3.3. Voice Activity Detection 
Silence or noise segments are undesirable for a query search, 
and were cut on queries from all frames that had a high 
probability of corresponding to silence or noise, if the sum of 
the 3 state posteriors of silence or noise phones is greater than a 
50% threshold for the average of the 5 languages. To account 
for queries that may still have significant noise, this threshold is 
incrementally raised if the previous cut is too severe (the 
obtained query having less than 500ms). 

3.4. Modified Dynamic Time Warping 
Every query must then be searched on every reference audio. 
The posteriorgrams of a query and searched audio can be 
compared frame-wise with a local distance matrix where 
Dynamic Time Warping (DTW) can be applied. We 
implemented a version of the DTW approach for the proposed 
task, which will be modified in ways described next. The basis, 
as in [3], consists in obtaining the local distance from the dot 
product of posterior probability vectors of query and audio for 
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all frames obtaining a local distance matrix where DTW is 
applied. The path search may start at any location in the audio, 
and vertical, horizontal and diagonal jumps of unitary weight 
are allowed. The final path distance is normalized by the 
number of movements (mean distance of the path). This is the 
basic approach (named A1) and outputs the lowest normalized 
distance found (from the best path). It is the basis from which 
the following approaches will be constructed. In addition to 
separate searches on distance matrices from posteriorgrams of 
5 languages, we add a 6th “language”/sub-system (called ML 
for multi-language) whose distance matrix is the average of the 
5 matrices. 

We employ several modifications to the DTW algorithm to 
allow intricate paths to be constructed that can correspond 
logically to the complex match scenarios of query and audio. It 
is not necessary to repeat full DTW for each, since backtrack 
matrices are saved where path modifications are explored. The 
modifications made are: 

� (A2) Considering cuts at the end of query for lexical 
variations; 

� (A3) Considering cuts at the beginning of the query; 
� (A4) Allowing one horizontal ‘jump’ for situations where 

the audio may have filler content; 
� (A5) Allowing word-reordering, where an initial part of 

the query may be found ahead of the last. 
� (A6) Allowing one vertical ‘jump’ along the query, of 

maximum 33% of query duration (to address T3 where 
small fillers or hesitations in the query may exist). 

Examples of A2 and A5 for clean audio can be seen in 
Figure 3 and Figure 4 . Further details of this implementation 
can be consulted in [18]. 

 
Figure 3: Example of Query vs. Audio distance matrix 

(top) and the best path from A2 (bottom). 

 
Figure 4: Example of Query vs. Audio distance matrix 

(top) and the best path from A5 (bottom). 

3.5. Fusion and Calibration 
The results of system performance will be presented by the 
scoring metrics of normalized cross entropy cost (Cnxe) and 
Actual Term Weighted Value (ATWV). Cnxe has been used for 
speaker/language recognition and evaluates system scores, with 
no concern for hard yes/no decision [21]. It interprets scores as 
log-likelihood ratios and measures the amount of information 
that is not provided by the scores compared to the ground truth 
where a perfect system would have Cnxe ≈ 0. ATWV evaluates 

system decision and takes into account false alarm and miss 
error rates. Both metrics consider a pre-defined false alarm error 
cost (Cfa=1) and a miss error cost (Cmiss=100), as well as a 
prior of the target trials (prior probability of finding a query in 
an audio file, Pt=0.0008). 

At this stage, we have distance values for each audio-query 
pair for 6 sub-systems and 6 DTW strategies (36 vectors). First, 
modifications are performed on the distribution per query per 
strategy. While deciding on a maximum distance value to give 
to unsearched cases (such as an audio being too short for a long 
query), we found that drastically truncating large distances 
(lowering to the same value) improved both Cnxe and ATWV. 
Surprisingly, changing all upper distance values (larger than the 
mean) to the mean of the distribution was the overall best. We 
reason that since there are a lot of ground truth matches with 
very high distances (false negatives), lowering these values 
improves the Cnxe metric more than lowering the value of true 
negatives worsens it. The next step is to normalize per query by 
subtracting the new mean and dividing by the new standard 
deviation. Distances are transformed to figures-of-merit by 
taking the symmetrical value. 

To fuse results of different strategies and languages we 
explore two separate approaches/systems, both using weighted 
linear fusion and transformation trained with the Bosaris toolkit 
[22], calibrating for the Cnxe metric by taking into account the 
prior defined by the task: 
� Fusion of all approaches and all languages (36 vectors). 
� Applying the Harmonic mean of the 6 strategies per 

language, obtaining 6 vectors (one per sub-system) and 
applying fusion. This is done to possibly prevent 
overfitting to the training data from weighing 36 vectors, 
and only languages are weighed. 

From each fusion, final result vectors with only one value 
per audio-query pair are obtained for development and test data. 
To get a decision if a query is a match to the audio or not, a 
threshold is computed by finding the maximum TWV on the 
dev set, using the defined miss and false alarm costs and target 
prior. 

Additionally, we provide side-info based on query and 
audio, added as extra vectors for all fusions. The 7 extra side-
info vectors are: mean of distances per query before truncation 
and normalization from the best approach and language (the 
highest weighted from fusion of all); query size in frames and 
log of query size; 4 vectors of SNR values (original SNR of 
query and of audio, post spectral subtraction SNR of query and 
of audio). 

4. Results 
Four main systems are analyzed: fusion of all approaches and 
languages with and without side-info; fusion of harmonic mean 
with and without side-info. Table 1 summarizes the results of 
the Cnxe and ATWV metrics for the 4 systems. 
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 Dev Eval 
Fusion Systems Cnxe ATWV Cnxe ATWV 
All + side-info 0.7782 0.2341 0.7866 0.2064 
Hmean + side-info 0.7862 0.2195 0.7842 0.2017 
All, no side-info 0.7873 0.2343 0.7930 0.2157 
Hmean, no side-
info 0.7957 0.2276 0.7915 0.2098 

Table 1. Results of Cnxe and ATWV for development 
and evaluation datasets using 4 fusion systems.  

Considering Cnxe as the main metric, it can be seen that the 
best result for the development set was the primary system that 
fused all languages and approaches plus some side-info. As 
suspected, the weighted combination of 36 vectors applied to 
the Eval set may be too over fitted to the Dev set, as the best 
Cnxe result on Eval was using the Hmean of approaches. The 
same does not hold true for the ATWV metric. The considered 
side-info always helped for Cnxe but leads to small decrease of 
ATWV. 

Next, results are evaluated per language/sub-system and per 
DTW strategy, considering the Harmonic Mean method without 
side-info for the evaluation dataset. Figure 5 shows the Cnxe 
results by using each language individually, using the mean 
distance matrix ML, fusing the 5 languages (5l), or fusing the 5 
languages and ML (All). The English system stands out as very 
poor performing. This may be due to being very sensitive to 
noisy conditions as the training audio for the phonetic 
recognizer is mostly very clean. Fusing the 5 languages at the 
end performs better than using the mean distance matrix ML, 
but fusing ML along with all languages provides the best results 
overall.  

 
Figure 5: Cnxe results per language sub-system and 

fusions for the Eval dataset. 

 
Figure 6: Cnxe results per DTW approach and fusions 

for the Eval dataset. 

Analyzing the performance of each DTW strategy, as 
shown in Figure 6, it shows that A1 and A2 were the best ones 

and a fusion (harmonic mean) of only these 2 is also considered 
(A1A2 in the figure). Furthermore, A2 was the best performing 
one in the train set, and allowing these cuts at the end of the 
query may help in most cases due to co-articulation or 
intonation. The proposed strategy of allowing a jump in query 
(A6) performs badly and should be reviewed. Actually, a filler 
in a query may be an extension of an existing phone, which 
leads to a straight path and not a jump. Analyzing the best result 
on Eval per query type with side-info (All-0.7842, T1-0.7107, 
T2-0.8147, T3-0.8115), the exact matches of type 1 are the 
easiest to detect compared to other types. 

Other improvements made through some steps of our 
system on the Dev set are also reported below (although the 
comparison may not be to the final approach). Using Spectral 
Subtraction resulted in 0.8130 Cnxe from 0.8368. Using per 
query truncation to the mean: 0.7873 Cnxe and 0.2343 ATWV, 
without truncation: 0.7939 Cnxe and 0.2256 ATWV. 

Since a perfect Cnxe score would be 0, the obtained results 
above 0.77 may seem undesirable at first. It should be stated 
that the data with added noise and reverberation made the task 
extremely challenging. Although the spirit of QUESST 
discourages comparison between participating teams, it should 
be mentioned that the obtained results were the second best in 
2015. When considering only the ground truth for audio and 
queries of low noise and no reverberation, even without 
recalibrating, the obtained results are more attractive: 
0.576/0.542 Cnxe and 0.532/0.493 ATWV for dev/eval. 
Furthermore, applying the described methods to the data from 
QUESST 2014, excluding noise subtraction and side-info, the 
results of 0.4646 Cnxe and 0.5066 ATWV are very interesting 
as they would surpass that year’s best. 

5. Conclusions 
Several steps were explored to tackle a Query by Example 
challenge, and the main contributions came from the following: 
a careful Spectral Subtraction to diminish background noise 
which greatly influences the output of phonetic recognizers; 
using the average distance matrix of all languages as a 6th sub-
system for fusion; including side-info of query and audio; and 
per-query truncation of large distances. Including a DTW 
strategy that considers gaps in query did not prove very 
successful. This may be due to its target cases being too few in 
the dataset, and even some fillers in query being extensions and 
not unrelated hesitations. Using the harmonic mean of different 
DTW approaches instead of linearly fusing them leads to 
improved cross entropy costs on evaluation data. 

Although the presented results mostly deal with very noisy 
data, the underlying conclusions should also be taken into 
account for cleaner data. Using bottleneck features could be an 
important step to improve our systems, and although we did not 
consider them yet, we focused on making improvements not 
related to the feature extractor. Manipulating the distribution of 
scores per query by drastically cutting values up to the mean 
indicates that more subtle normalization methods that alter the 
distribution should also be investigated. 
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