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Abstract

Recent automatic speech recognition (ASR) results are quite
good when the training data is matched to the test data, but much
worse when they differ in some important regard, like the number
and arrangement of microphones or differences in reverberation
and noise conditions. This paper proposes an unsupervised spa-
tial clustering approach to microphone array processing that can
overcome such train-test mismatches. This approach, known as
Model-based EM Source Separation and Localization (MESSL),
clusters spectrogram points based on the relative differences in
phase and level between pairs of microphones. Here it is used for
the first time to drive minimum variance distortionless response
(MVDR) beamforming in several ways. We compare it to a
standard delay-and-sum beamformer on the CHiME-3 noisy test
set (real recordings), using each system as a pre-processor for
the same recognizer trained on the AMI meeting corpus. We
find that the spatial clustering front end reduces word error rates
by between 9.9 and 17.1% relative to the baseline.

Index Terms: Spatial clustering, beamforming, minimum-
variance distortionless response, microphone arrays

1. Introduction

While ASR systems using deep neural networks (DNN) as acous-
tic models have recently provided remarkable improvements in
recognition performance [1], their discriminative nature makes
them prone to over-fitting the conditions used to train them.
For example, in the recent REVERB challenge [2], far-field
multichannel automatic speech recognition (ASR) systems con-
sistently performed more accurately in the simulated conditions
that matched their training than in the real recording conditions
that did not. In order to address generalization, DNN acoustic
models can be trained using multi-condition data [3], for exam-
ple to combine multichannel time-domain signals in noise [4].
DNN enhancement systems can similarly be trained explicitly to
generalize to new source positions for a fixed array [S] or new
non-speech noises [6].

While explicit generalization to new spatial configurations
of microphones, sources, and rooms is expensive to include in
discriminative training procedures, it can be naturally factored
out of the data through beamforming. Traditional beamforming
assumes a known array geometry, which hinders generalization
to new conditions, but unsupervised localization-based cluster-
ing avoids this assumption. Successful systems of this type have
been introduced for two-microphone separation [7, 8, 9], and in
larger ad-hoc microphone arrays for localization [10], calibra-
tion [11], and construction of time-frequency (TF) masks [12].
While [13] performs unsupervised beamforming in distributed
arrays for enhancement, the current paper performs unsupervised
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beamforming on compact arrays for ASR and is evaluated in
much noisier conditions. Similarly [14] describe a clustering-
based MVDR beamformer, but apply it to enhancement, not ASR.
The current approach can be considered a fully probabilistic ver-
sion of [15], which performs similar operations, but requires
setting several heuristic parameters. The current approach is also
able to better integrate information across frequencies, allowing
it to be used with a standard large-vocabulary automatic speech
recognizer, as opposed to the more limited missing data digit
recognizer of [15]. A similar approach using complex Gaussian
mixture model spatial clustering to drive MVDR beamforming
was developed concurrently with ours [16].

At the core of the proposed approach is the spatial cluster-
ing algorithm known as Model-based Expectation Maximiza-
tion Source Separation and Localization (MESSL). MESSL per-
forms mask-based separation by clustering TF points in the joint
space of interaural phase differences (IPD) and interaural level
differences (ILD) [9]. Originally formulated for binaural (two-
channel) recordings, it was recently extended to the multichannel
case [17] by modeling all pairs of channels with the binaural
model. While [17] applied the mask estimated by multichannel
MESSL as a post-filter to the output of a standard beamformer
[18], the current paper explores several approaches to driving
MVDR beamforming with MESSL’s outputs.

2. Binaural MESSL

In the absence of additive noise or multiple talkers (which will
be considered shortly) a single source, s(¢), arriving at two ears,
£(t) and r(t), through channels h,(¢) and h.,(t), can be written
as

L(t) = s(t) * he(t) r(t) = s(t) * hr(t). e}
The ratio of the short-time Fourier transforms, F{-}, of both
equations is the interaural spectrogram, which provides the ob-
servations upon which MESSL operates

FLt)}
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We parameterize this interaural spectrogram with a(w, t), the
ILD (measured in dB) and ¢(w, t), the IPD. Assuming that the
channel to each ear includes a sufficient amount of energy from
the direct-path, these observations are modeled as

L{w,t) _ | gatt)/20 ot
R(w,t)

(@3

~ 10%/20e 7T N (4, 1) 3)

where a(w) models the ILD (measured in dB) of the direct-
path signal, 7(w) models the ITD of the direct-path and early
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echoes of the signal, and N (w, t) is a complex valued, time- and
frequency-dependent noise of relatively small magnitude.

In order to avoid spatial aliasing issues, the ITD is modeled
as a discrete hidden variable and IPD observations are compared
to IPDs predicted from each ITD. Another discrete random vari-
able models the source that generated a particular observation,
leading to hidden binary random variables zy (w, t), which are
1 when TF point w, ¢ comes from source k£ and delay 7. At each
combination of source and delay, the IPD and ILD observations
are modeled by a Gaussian distribution with diagonal covariance,
making this a Gaussian mixture model. We use the expecta-
tion maximization (EM) algorithm to estimate the maximum
likelihood model parameters, O, from the observations, while
simultaneously estimating the expected values of the zj-(w, t)
indicator variables. Marginalizing those expected values over
delay, 7, yields the probability that each TF point comes from
each source, probabilistically separating them. The total log
likelihood that MESSL maximizes is

L(®) = logp(¢(w,t), a(w,t)|©)

= Z log Z [p(zk‘r (wv t) ‘ @)

PO, 1), aw, 1) | 20r (1), ©)]

“
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The E step computes the posterior of zx-(w, t) and the M step
uses these posteriors to update the parameter estimates [9].

We also utilize a recently described extension to MESSL
called MESSL-MREF [19], which uses the MESSL posterior over
sources as the local potential in a grid-shaped pairwise Markov
random field (MRF). This MRF penalizes the assignment of
neighboring TF points to different sources, smoothing the masks
and reducing musical noise. Exact inference in the grid-shaped
MREF is intractable, so we use loopy belief propagation (LBP) to
approximate a solution. In [19], the sum-product variant of LBP
was used inside the EM algorithm to smooth the probabilistic
masks. Here we additionally utilize the max-product variant of
LBP to estimate a globally consistent hard mask after the source
parameters have been estimated.

3. Multichannel MESSL

Multichannel MESSL [17] models every pair of microphones
separately using the binaural model described in Section 2.
These models are coordinated through a global TF mask for
each source. While model parameters are difficult to translate
between microphone pairs without calibration information, TF
masks are much more consistent across pairs. Coordination
through masks should therefore be agnostic to the microphone
array geometry and allow adaptation to new microphone con-
figurations without calibration. Multichannel MESSL on M
microphones maximizes the following total log likelihood

M

L(©) = % > L(©4) (6)
i<j=1
2 M
=M > ZlogZ[p(ZkT(w,t)\Gij) ©)
i<j=1 wt kT

P(15 (@, 8), 1 (@,8) | 21 (@,1), O5)|.

Averaging over all pairs in this way assumes that all microphone
pairs are independent of one another, whereas in reality only

1992

M — 1 are. This false assumption leads to an over-confidence
in the likelihoods that is compensated by the % term. Prelim-
inary experiments showed that using all pairs of microphones
with this correction factor led to higher quality separations than
designating a single microphone as reference and using M — 1
pairs. The E and M steps for the model then proceed almost as
in the two-channel algorithm. In the E step, the likelihood of
the observations for each microphone pair is calculated under
each source model. These likelihoods are then multiplied across
microphone pairs and normalized across sources to give the final
global posterior masks. In the M step, these global masks are
used to re-estimate the parameters of each pair-wise model.

Initializing the multichannel model requires initializing the
pair-wise models and coordinating the source models across
microphone pairs. We explored two different initializations. The
first used the PHAT-histogram approach [20] to find the dominant
peaks in cross-correlations between pairs of channels followed
by several iterations of binaural MESSL to estimate a mask for
each source. These masks were then used to align the sources
across microphone pairs. This approach has the advantage of
being self-contained. The second initialization used a TF mask
derived from level differences between a beamformer output
and a reference microphone. In the experiments below, this was
between the output of BeamformlIt [21] and a microphone facing
away from the talker. The mask is constructed from the 30% of
points where the beamformer output is maximally louder than the
reference. This initialization has the advantage of automatically
aligning the source models across microphone pairs, but can fail
if the baseline beamformer fails in localization or separation.

4. MESSL-driven MVDR beamforming

Beamforming is the process of combining signals recorded from
a microphone array into a single estimate of a target signal. This
estimate is typically driven by an optimality criterion. One popu-
lar criterion for fixed (non-adaptive) filter-and-sum beamforming
is that of minimum variance distortionless response (MVDR)
[22], which aims to minimize the output power of the beam-
former while preserving signals from a target “look” direction.
In the short-time Fourier transform domain, if a target signal
S(w, t) is observed by a microphone array with M microphones,
then the ¢th microphone signal is

Xi(w,t) = Hy(w)S(w,t) + Ns(w, t). (8)
These microphone signals can be stacked into complex vectors
at each TF point,

X(w,t) = H(w)S(w, t) + N(w, t). )

Then the linear MVDR beamformer at frequency w is
w*(w) = min E {|WHX(w,t)|2} st.wid(w)=1 (10)

where d(w) is a steering vector, indicating the direction that
should be preserved with unity gain. Recently, [23] showed that
this can be solved without the use of an explicit steering vector
by

w (W) = Py (W) P (W) ert
) tr (P (w)Prr (W) an
(P (@) Pxx(w) — Dewt 1)

Ctr (Pyn (W) Pxx(w)) — M
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Figure 1: Three ways that MESSL outputs can drive minimum
variance distortionless response beamforming: IPD parameters
for look direction and masks for noise estimatation and/or non-
linear post-filtering.

where M is the number of microphones, I is the M x M identity
matrix, and ey is a vector of zeros with a single one selecting
a reference microphone. This method allows the MVDR beam-
former to be estimated without the use of an explicit steering
vector, but still requires the estimation of ® 5 (w), the noise
spatial covariance, and either ® x x (w), the mixture spatial co-
variance, or ® ;i (w), the target source spatial covariance. In
our experiments, the denominator of these expressions was some-
times close to zero or even negative for a small set of frequencies,
causing a large gain in the output at those frequencies and poor
overall sound quality. We overcame this issue by enforcing that
it be at least 1 (i.e., by replacing it with 1 if it was less than 1).

In the experiments discussed below, we explore the use of
MESSL in driving MVDR beamforming in several ways, as
illustrated in Figure 1. For estimating the noise spatial covari-
ance matrices, ® vy (w), we compare using MESSL’s masks to
using the 400 to 800 ms of audio preceding the speech of each
utterance, assumed to be noise-only, which is the approach taken
by the baseline CHiME-3 system (see [24]). For estimating the
steering vector, we compare an estimate of ® sz (w) based on
MESSL’s IPD parameters to a derivation from (12) using ®x x .
For a non-linear post-filter, we compare the use of MESSL’s
masks to apply a gain to each TF point of the beamformed signal
to the use of the unmodified output of the beamformer.

MESSL’s mask for a single source, M *)(w, t), can be used
as a frequency-dependent voice activity detector to estimate
[ NN (UJ) as

s Z?:l (1 _ M(w’ t)) X(wvt)XH(wvt) )
S (1= M(w, 1))

To avoid speech damage, we do not include observations at any
frequency from frames when more than 40% of frequencies are
predicted to be speech. To ensure that O x v (w) is invertible, we
always include the first M frames and the last 2\ frames of an
utterance in estimating it, numbers determined empirically.

Because MESSL models the IPD and ILD of each pair of
microphones, it cannot reconstruct the magnitude of ® i i (w),
but it can reconstruct its phase. Luckily, for compact arrays
without a baffle between the microphones, the magnitude of the
entries of this array should be close to unity. We thus compute
the steering matrix entries

Dy (w) (13)

— ¢Lka
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This approach takes advantage of MESSL'’s frequency-varying
IPD estimates and does not assume a pure delay between micro-
phones, as standard steering vector formulations do.

Finally, MESSL’s masks can be used as non-linear post-
filters for the output of the MVDR beamformer. We found

(k)
H;H;

(@)

B _ —ju.m'f).e)(w)
for ¢ijrw = Er g€ J . (14)
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that using a maximum suppression of —9 dB = 0.355 at TF
points where the mask was O reduced noise without causing
noticeable artifacts. Preliminary ASR experiments also showed
that —9 dB gave lower word error rates (WERs) than both —6 dB
and —12dB.

5. Experiments

We evaluate MESSL-MVDR in the context of ASR in mis-
matched far-field conditions. The baseline recognizer was
trained on the AMI Meeting Corpus [25, 26], recorded on an
8-microphone circular array of diameter 10 cm. We use the mul-
tiple distant mic (MDM) condition processed by the BeamformlIt
tool [21], which performs delay-and-sum beamforming using
time-varying source localization. We use the AMI Full-ASR
partition training set (about 78 hours of speech) proposed in [27]
and the corresponding Kaldi recipe with the provided automatic
segmentations (version 1.6.1). The final acoustic model is a
fully-connected deep neural network (DNN) that takes as input
40-dimensional log Mel filterbank features with first and second
time derivatives [28]. This DNN is trained on labels aligned
by a GMM-HMM model trained on MFCC features followed
by linear discriminant analysis [29] and semi-tied covariance
transforms [30], and discriminatively trained using the boosted
maximum mutual information [31] criterion. The number of
tied-states is roughly 4000.

This recognizer is tested on the live data portion of the
CHiME-3 [24] dataset, which records speech input to a simu-
lated tablet device in noisy environments. It uses a 6-microphone
rectangular array around edge of the tablet, to which a talker
whose mouth is 30-50 cm away reads sentences from the Wall
Street Journal corpus (WSJ0). The recordings are made in four
different noisy environments with an estimated signal to noise ra-
tio of 0 dB. The acoustic model described above is used with the
default CHiME-3 language model. Thus the training and test sets
differ significantly in the number of microphones, array geome-
try, amount of reverberation, microphone array distance, amount
and type of noise, speaking style, and vocabulary. MESSL is
used only on the development and test sets, not in training.

5.1. Results

Table 1 shows the results of these experiments. The best system
on the development set is shown in row 15 and used the MESSL
noise estimate, MESSL post-filter, cross-correlation initializa-
tion for MESSL, and the mixture spatial covariance for (12). The
columns of the table are ordered by the increase in word error
rate on the development set caused by changing one of these pa-
rameters from this best setting. The rows of the table are ordered
by the settings in each column. The parameter with the largest
effect on this system is the noise estimate. Using the preceding
800 ms instead of the MESSL mask to estimate the noise results
in a 2.75% absolute (14.0% relative) increase in development set
word error rate (WER) (row 7 vs. 15). The second largest effect
comes from the post-filter. Removing the post-filter results in a
2.4% absolute (12.2% relative) increase in WER (row 11 vs. 15).
The last two parameters have smaller effects on the development
set. Initializing MESSL from BeamformlIt instead of using cross-
correlations results in a 1.1% absolute (5.4% relative) increase
in WER (row 13 vs. 15). Using the look direction from MESSL
IPD instead of the mixture results in a 0.7% absolute (3.7%
relative) increase in WER (row 14 vs. 15).

Baseline systems using Beamformlt are shown in the bot-
tom two rows. The MESSL post-filter decreases WER for them



Table 1: Word error rates for recognizer trained on AMI data and
tested on enhanced CHiME-3 real recordings. Noise estimates
from the previous 400-800 ms (Prev) or MESSL mask. Post-
filter not used (None) or MESSL mask. MESSL Initialized
from Beamformlt or cross-correlation (Xcorr). Look direction
from mixture (Mix) or from MESSL IPD. Bottom: BeamformIt
baselines. Rows that are discussed in the text are colored.

WER (%)

Noise est ~ Post-filt ~ MESSLInit  Look dir Dev Test

1 Prev None — Mix 29.2  48.6
2 Prev None BeamformlIt MESSL 26.1 39.7
3 Prev None Xcorr MESSL 246  40.2
4 Prev MESSL BeamformlIt MESSL 22.8 354
5 Prev MESSL BeamformlIt Mix 232 39.5
6  Prev MESSL  Xcorr MESSL 208 356
7 Prev MESSL  Xcorr Mix 225 40.1
8 MESSL None Beamformlt ~ MESSL 26.7 43.9
9  MESSL None BeamformlIt  Mix 224 324
10 MESSL None Xcorr MESSL 23.1 41.3
11 MESSL None Xcorr Mix 22.1 34.8
12 MESSL MESSL  Beamformlt =~ MESSL 239 395
13 MESSL MESSL  Beamformlt  Mix 20.8  30.0
14  MESSL MESSL  Xcorr MESSL 204  36.1
15  MESSL MESSL  Xcorr Mix 19.7 326
16 — None — — 227 362
17 — MESSL  — — 206  31.0

by 2.1% absolute (9.3% relative) (row 16 vs. 17). Without a
post-filter, two MESSL-MVDR systems (rows 9 and 11) achieve
lower development and test WERs than the corresponding base-
line (row 16), showing that MESSL can be used to effectively
drive beamforming. With the post-filter, the same two systems
(rows 13 and 15) perform comparably to the baseline (row 17).
The MESSL-MVDR system that performs best on the develop-
ment set (row 15) reduces WER on the test set by 3.6% absolute
(9.9% relative) compared to the plain BeamformlIt baseline. Con-
sistent differences in performance have been seen on test and
development sets for CHIME-3 [24], which might suggest look-
ing directly for the best system on the test set, in which case, the
best MESSL-MVDR system (row 13) reduces WER by 6.2%
absolute (17.1% relative).

6. Conclusion

This paper has introduced the use of multichannel MESSL to
drive minimum variance distortionless response beamforming.
By clustering time-frequency points based on their spatial charac-
teristics, this system is able to generalize to quite different record-
ing conditions. Experiments recognizing data from CHiME-3
with a recognizer trained on AMI show that there are several
ways of utilizing the outputs of MESSL with MVDR beam-
forming, including incorporating its mask into the noise spatial
covariance estimate and as a post-filter and including its interau-
ral phase differences into the target spatial covariance estimate.
While using MESSL’s outputs for spatial covariance estimates
of the noise and for mask-based post-filtering improved ASR
performance compared to a standard baseline, their use for es-
timating the target spatial covariance did not. In the future,
combining speech models with spatial clustering could improve
performance further. One possibility would be to generalize the
speech models of [32] from binaural to multichannel recordings.
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