
Combining state-level spotting and posterior-based acoustic match
for improved query-by-example spoken term detection

Shuji Oishi1, Tatsuya Matsuba1, Mitsuaki Makino1, Atsuhiko Kai1

1Graduate School of Integrated Science and Technology, Shizuoka University, Japan
oishi@spa.sys.eng.shizuoka.ac.jp, matsuba@spa.sys.eng.shizuoka.ac.jp,

makino@spa.sys.eng.shizuoka.ac.jp, kai@sys.eng.shizuoka.ac.jp

Abstract
In spoken term detection (STD) systems, automatic speech
recognition (ASR) frontend is often employed for its reasonable
accuracy and efficiency. However, out-of-vocabulary (OOV)
problem at ASR stage has a great impact on the STD perfor-
mance for spoken query. In this paper, we propose combining
feature-based acoustic match which is often employed in the
STD systems for low resource languages, along with the other
ASR-derived features. First, automatic transcripts for spoken
document and spoken query are decomposed into correspond-
ing acoustic model state sequences and used for spotting plau-
sible speech segments. Second, DTW-based acoustic match
between the query and candidate segment is performed using
the posterior features derived from a monophone-state DNN.
Finally, an integrated score is obtained by a logistic regres-
sion model, which is trained with a large spoken document and
automatically generated spoken queries as development data.
The experimental results on NTCIR-12 SpokenQuery&Doc-2
task showed that the proposed method significantly outperforms
the baseline systems which use the subword-level or state-level
spotting alone. Also, our universal scoring model trained with
a separate set of development data could achieve the best STD
performance, and showed the effectiveness of additional ASR-
derived features regarding the confidence measure and query
length.

Index Terms: spoken term detection, spoken query, posterior-
gram, acoustic similarity, score normalization

1. Introduction
Spoken term detection is a task which locates a given search
term in a large set of spoken documents. Typically, automatic
speech recognition (ASR) frontend is often employed for its
STD performance in efficiency and accuracy. However, out-of-
vocabulary (OOV) problem degrades recognition accuracy and
affects the STD performance.

To deal with OOV problem, many approaches using
a feature-based acoustic match have shown its effective-
ness in low-resource STD tasks, as well as the robustness
against the effects by difference of speaker and recording
environments[1],[2],[3]. However, a feature-based approach is
time-consuming and the approach alone couldn’t outperform
the STD performance of conventional ASR-based system for
rich-resource language tasks. On the other hand, in the context
of STD system for rich-resource language, related works us-
ing the approximate match between query and ASR-based au-
tomatic transcript with subword-level acoustic similarity have
been proposed to deal with OOV problem. In [4], a syllable-
level distance measure based on the Bhattacharyya distance

derived from syllable-unit HMMs is used. In our previous
works[5],[6], DTW-based spotting with a syllable-unit HMM
state-level distance measure from word-level automatic tran-
script has shown significant improvement.

In this paper, we investigate the STD approaches which
combine feature-based matching with the other ASR-derived
features. An ASR acoustic model similarity based STD sys-
tem is used as a baseline system. The proposed STD system
is based on a two pass strategy. The first pass performs DTW-
based spotting with ASR-derived acoustic dissimilarity which
is syllable-unit HMM state-level distance measure. The sec-
ond pass performs frame-level feature-based matching against
candidate regions that is narrowed down by the first pass. We
adopt posteriorgram feature derived from a DNN-based acous-
tic model, since previous studies have shown that it improves ro-
bustness for different speaker or recording environments[2][3].

We adopt two approaches for score-level system combina-
tion and for incorporating side information into scoring model.
First, we integrate score with simple linear combination. Sec-
ond, we integrate score with a logistic regression model which
is trained with a large spoken document and automatically gen-
erated spoken queries. In contrast to conventional score fu-
sion systems [7],[8] with multiple ASR systems, our regression
model relies only on single ASR system and is trained along
with the additional ASR-derived features regarding confidence
measure and query length.

In this study, the experiments were conducted on the
NTCIR-12 SpokenQuery&Doc-2 tasks[10] which target a spo-
ken document collection: the Corpus of Spoken Document Pro-
cessing Workshop (SDPWS). The experimental result shows
that using an integrated score which is obtained by a logistic re-
gression model from feature-based acoustic matching score and
ASR-derived features attains the best STD performance. Also,
the proposed approaches which combine feature-based acoustic
matching and scoring with ASR-derived features are effective
for OOV queries.

2. Baseline spoken term detection system
We compare with two baseline systems. The first baseline sys-
tem (Baseline1) adopts a DTW-based spotting method which
performs matching between subword sequences of query term
and spoken documents and outputs matched segments. In
NTCIR-9 SpokenDoc STD baseline system[9], a similar sys-
tem with the local distance measure based on phoneme-unit
edit distance is used. In our Baseline1 system, the local dis-
tance measure is defined by a syllable-unit acoustic dissimilar-
ity as used in [4]. The distance between subwords x and y,
Dsub(x, y), is calculated by the DTW-based matching of two

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-1259740



�������

	�
����


��
����

�������

�����

�������
������
�

��

���
��������
�

������������

�
���
�
���

��

��������� 
���������

	�
����

�
���
�
�!����

������"������
�

#!!�$!!� 

%���
��
���
�������

�
���
�
���������
�

�����
�����

��������������

���	���

�
����������

��������
��"���
����&

�����
�
����������� 

•�����������	

��	

• 
����������	


�	��������

• ���������
������	
�����	�������	

'�
���
������

��
����
���

(�������
��

!������

���	

�������

)����

�����
�

���	�
��

���	�
�����

���

���	�����
��

�������

���������

���������

	�
����

�
���
�
�!����

�����������

�
�
��	** 

���������

�����	��

)��
���

����
��������

�� 

�+
��

��

��
���
�
�

����
��

��
����,������� 

���

������
�

�
�
��������

��������
�
���

�-�
����� 

Figure 1: Overview of proposed STD system

subword HMMs with the local distance defined by the distance
between two state’s output distributions. We define the distance
between two Gaussian mixture models P and Q as

DBD(P,Q) = min
u,v

BD(P {u}, Q{v}) (1)

where, BD(P {u}, Q{v}) denotes the Bhattacharyya distance
between the u-th Gaussian component of P and the v-th Gaus-
sian component of Q.

At the first stage of preprocessing, 1-best recognition re-
sults for a spoken document archive are obtained by an ASR
system with a word N-gram language model. Then, the word-
based recognition results are converted into syllable sequences
by using pronunciation dictionary.

At the stage of STD for spoken query input, the query is first
transcribed by ASR system and then decomposed into a syllable
sequence. Next, a DTW-based word spotting is performed by
using an acoustic dissimilarity as local distance measure[5],[6].
Finally, a set of segments with a dissimilarity score less than a
threshold is obtained as the retrieval result.

Baseline1 adopts the spotting method based on syllable-
unit local distance measure Dsub(x, y). On the other hand, the
second baseline system (Baseline2) adopts a DTW-based spot-
ting method for the syllable-unit HMM state sequences, that
is shorter than syllable unit, to elaborate spotting unit. The
DTW-based spotting method for the syllable-unit HMM state
sequences uses acoustic dissimilarity eq.(1) directly in the first
pass, unlike subword-level local distance Dsub calculation in
Baseline1 system or the use in the second pass only[6].

3. Proposed spoken term detection method
3.1. Proposed system overview

Overview of our proposed STD system is shown in Fig. 1.
The system adopts two-pass strategy for both efficient process-
ing and improved STD against recognition errors. The first
pass performs DTW-based spotting method for the syllable-unit
HMM state sequences as described in Section 2. The second
pass performs frame-level acoustic matching against candidate
regions those are narrowed down by the first pass. As shown in
Fig. 1, we adopt DNN-based phonetic posterior feature which is
described in Section 3.2. Finally, an integrated score is obtained
by a logistic regression model as shown in Fig. 1 together with

the additional ASR-derived features regarding the recognition
confidence measure and query length. We have also compared
an alternate method which is score fusion with a simple linear
combination,

ScoreFinal = αScoreDP + (1− α)Scorestate (2)

where the first pass score is Scorestate and the second pass
score is ScoreDP , respectively.

3.2. Posterior-based acoustic match

In DTW-based STD approaches, posteriorgram feature is of-
ten used as an acoustic feature vectors for calculating local dis-
tance. Acoustic model based on GMM or Multilayer percep-
tron (MLP) is used to transform the MFCC feature into phonetic
posteriors[11],[12].

We use deep neural network (DNN) to model the distribu-
tion of acoustic feature in monophone HMM states and its out-
put serves as a posterior feature vector. The local distance be-
tween two posterior vectors x and y is defined as the negative
log of the inner product :

d(x,y) = −log(x · y) (3)

The DNN is structured in 7 layers (an input layer, 5 hidden lay-
ers, and output layer). The number of units of output layer
is 145. The DNN is trained on Restricted Boltzmann Ma-
chine (RBM) as pre-training and then discriminatively trained
for monophone states by cross-entropy criterion.

The second pass performs frame-level DTW by using pos-
terior vector-based local distance. One of major issues of the
second pass DTW is the error of matched region caused by
the first pass DTW detection error. We employ an end-point
free DTW algorithm which allows extra matched regions (+β
frames in maximum) on both sides of hypothesized starting and
ending points.

3.3. Integrated score by logistic regression model

There are some difficulties in deciding an optimized threshold,
because ScoreDP and Scorestate, which influence final deci-
sion, are easy to change by ASR condition such as mismatch
between linguistic/acoustic model and target document. There-
fore, we adopt an approach which learns scoring model which
discriminates positive and negative detections from a lot of sam-
ples and expect that the approach gives a normalized score.

We use a large spoken document and automatically gener-
ated spoken queries as development set in advance to train the
logistic regression model. The model is supervised learned by
using matching scores derived from true and false candidates,
which are detected by the first-pass spotting process, together
with some ASR-derived features as described below. Spoken
queries are extracted from a large spoken documents which is
employed for learning acoustic model of ASR. We automati-
cally extract spoken queries by using results of alignment which
is employed for learning acoustic model. Spoken queries are all
noun phrases and those which only appear once in one lecture
are excluded.

We estimate the probability of correct detection by using
the trained logistic regression model. As a cue that affects the
variability in matching scores of correct detection, we focus on
recognition confidence measure (RCM) and query length. We
introduce them to the logistic regression model as additional
ASR-derived features to estimate an integrated score by logistic
regression.
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Table 1: Example of binary features for query length
(If the number of morae in a query term is Lk and less, the k-th
feature represents 1, otherwise 0)

Binary feature Lk

Query term
Length

(#morae)
4 6 8 10

Ni ho n ji n
(Japanese)

5 0 1 1 1

Shi zu o ka da i ga ku
(Shizuoka university)

8 0 0 1 1

A ri ga to u go za i ma su
(Thank you)

10 0 0 0 1

We estimate the recognition confidence measure (RCM) by
calculating the average of posterior probability of the highest
likelihood recognition in candidate region detected by the first
pass. The RCM score is assumed to combine with Scorestate

obtained by DTW-based spotting.
Given a syllable sequence of candidate region B =

{B1, · · · , BY }, the confidence of candidate region is defined
as,

RCM(B) =

∑Y
k=1 P (Bk|Xk)

Y
(4)

where, X = {X1, · · · , XY } is speech segment corresponding
to the B, and P (Bk|Xk) denotes the posterior probability of
syllable Bk on 1-best recognition result in lattice. For simplic-
ity, we approximate the calculation of RCM by

RCM(B) = RCM(T ) =

∑j
t=i maxs {P (s|t)}

j − i+ 1
(5)

where, T = {i, · · · , j} is the speech frames corresponding to
the B, and P (s|t) denotes the posterior probability of phone s
at frame t in lattice.

Another feature we introduced is query length in terms of
the number of morae included in the corresponding automatic
transcript. Mora is a linguistic unit in Japanese language and
often used as a convenient way to describe the length. We in-
troduce binary features for representing query length. As illus-
trated in Table 1, if the number of query’s morae is a specific
number of morae (Lk) such as 4, 6, 8, 10 morae and less, then
the feature represents 1, otherwise, the feature represents 0.

4. Experiments
4.1. Experimental setup

In the evaluation experiment of STD by spoken queries (SQ-
STD task evaluation set), we have verified the robustness of the
proposal method by using a target document collection used in
the NTCIR-12 SpokenQuery&Doc-2 tasks: the lecture of Spo-
ken Document Processing Workshop (SDPWS, 107 lectures,
about 29 hours). As with NTCIR-12 SpokenQuery&Doc-2
STD evaluation, the Inter-Pausal Units (IPU) are used as the
basic units to be searched and the retrieval result of the IPU is
regarded as correct if it includes the query term. In NTCIR-12
SpokenQuery&Doc-2 task, some queries are composed of two
or more kinds of terms. To accommodate such queries, we split
the query into terms by using the automatic transcript of spoken
query and performed a search for each term. Finally, we have
obtained search result of the query composed of some terms
by using each term’s search result. Regarding how to split the

query, we have split them by the pauses which are no shorter
than 200 msec. For the evaluation of SQ-STD task, we use 162
query terms which are spoken by 10 speakers including 59 OOV
query terms which were used for the formal-run in NTCIR-12
SpokenQuery&Doc-2 SQ-STD task. These reference automatic
transcriptions of the evaluation set were provided from NTCIR-
12 organizer. They provided reference automatic transcriptions
by using DNN-HMM acoustic model which was trained with
the Corpus of Spontaneous Japanese (CSJ, 950 lectures)[13].
They used KALDI toolkit[14] to train the acoustic model.

For training the logistic regression model described in Sec-
tion 3.3, a part of the CSJ corpus was used as a development
data. The development data was divided into two parts: a tar-
get spoken document set for generating examples of matched
scores by running STD and the other document set for extract-
ing examples of spoken queries. The Core set of the CSJ (CSJ-
CORE, 177 lectures, about 44 hours) was selected as the tar-
get spoken document set. For generating positive and negative
examples, we use 620 spoken query terms including 163 OOV
query terms, which are selected by a commonly used tf-idf crite-
rion from a manual text transcription and excluding terms which
are either too long(more than 13 morae) or too short(less than
3 morae). The spoken query terms are automatically extracted
as described in Section 3.3 by using a subset of CSJ corpus
(910 lectures), which is also used for learning both of acous-
tic model for ASR and DNN-based feature extractor described
in Section 3.2. The word accuracies for based automatic tran-
scriptions were 81.3% for SDPWS and 74.0% for CSJ-CORE,
respectively.

We have trained monophone-state DNN which are used for
posterior feature extraction by using the KALDI toolkit. The
experiment uses 40 dimensional features that applied Linear
Discriminant Analysis(LDA) to 39 dimensional MFCC features
(MFCC+power+ΔMFCC+Δpower+ΔΔ MFCC+ ΔΔ power)
with speaker level Cepstral Mean and Variance Normaliza-
tion(CMVN), and we use 40 dimensional × 11frames as input
features to DNN. The posterior feature vector has 145 dimen-
sional features which correspond to the number of monophone
states.

As a measure of search performance, we use F-
measure(max) and MAP. F-measure(max) is the maximum
value of F-measure when the threshold is adjusted. MAP is
the Mean of Average Precision of all queries per query.

4.2. SQ-STD task result

Table 2 compares the STD performance of two baseline sys-
tems (first-pass only) and the proposed systems which consist
of two-pass detection and verification steps with different com-
bining methods for SDPWS target document collection. Base-
line1 and Baseline2 are described in Section 2. State spot+post
represents the system based on the combined score by using lin-
ear combination described in Section 3. State spot+RCM and
State spot+post+RCM+Mora represent the systems that com-
bine the state spot score with only RCM or 3 features (post,
RCM and Mora) described in Section 3.3 by using logistic re-
gression, respectively. A system denoted as “+Mora” adds a set
of binary features on query length for score fusion as described
in Section 3.3.

All queries consist of IV(in-vocabulary) queries and OOV
queries. The parameters of the first-pass threshold are decided
to separate the upper 1000 candidates per query. The weight
coefficient α for the linear combination is determined by op-
timizing the F-max performance for development set. The pa-
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Table 2: Formal-run(evaluation set) STD performance

querytype system F(max) MAP

ALL

Baseline1(syll spot) 38.32 64.42
Baseline2(state spot) 45.94 66.03

state spot+post(LC,α=0.6) 42.75 72.27
state spot+RCM(LR) 45.88 65.38

state spot+post+RCM+mora
(LR)

51.64 72.73

IV

Baseline1(syll spot) 45.34 73.14
Baseline2(state spot) 59.46 74.52

state spot+post(LC,α=0.6) 51.19 80.06
state spot+RCM(LR) 59.38 73.93

state spot+post+RCM+mora
(LR)

58.83 80.02

OOV

Baseline1(syll spot) 20.51 49.20
Baseline2(state spot) 19.71 51.20

state spot+post(LC,α=0.6) 22.25 58.66
state spot+RCM(LR) 19.55 50.46

state spot+post+RCM+mora
(LR)

31.79 60.01

�

��

��

��

��

��

��

��

	�


�

���

� �� �� �� �� �� �� �� 	� 
� ���

�
�
�
�
�
�
�
�
	


�
�

��������	

��������	
������
���

���������
�������
���

�������
���
���
���

�������
������
���

�������
���
������������


���

Figure 2: Recall-Precision curves of different STD systems
(ALL queries)

rameter β which determines the maximum frame length of extra
matched regions in the second-pass acoustic match was empiri-
cally set to 30.

The result shows that the proposed system outperforms the
baseline systems which use only the first pass. In the proposed
methods, especially, the second pass approaches which combine
feature-based acoustic match improve the performance in MAP.
On the other hand, the STD performance of state spot+post and
state spot+RCM are lower than that of Baseline2(state spot)
in F-measure(F-MAX). However, state spot+post+RCM+Mora
which uses an integrated score that combined all knowledge in-
formation by using logistic regression model attained the best
STD performance while improving the STD performance for
ALL and OOV queries.

Also, STD performance is often measured in terms
of receiver operating characteristic (ROC) curve. ROC
curve is drawn by changing the detection threshold. ROC
curves in Fig.3, 4 and 5 respectively show that the
State spot+post+RCM+Mora method attains the best STD per-
formance. The proposed method significantly improved the pre-
cision in low-recall region.
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Figure 3: Recall-Precision curves of different STD systems
(OOV queries)
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Figure 4: Recall-Precision curves of different STD systems (IV
queries)

5. Conclusions
In this paper, we proposed combining feature-based acoustic
matches with the other ASR-derived features to solve OOV
problem and introduced a logistic regression modeling for in-
corporating simple ASR-derived features from single ASR sys-
tem. The experimental results showed that combining a feature-
level matching of posterior feature vectors with ASR frontend-
based spotting improves the STD performance compared with
baseline methods which use only spotting with subword-level
or state-level local acoustic dissimilarity measure. In addition,
using an integrated score which is obtained by a logistic regres-
sion model derived from feature-based acoustic matching score
and ASR-derived features significantly improves the STD per-
formance compared with baseline methods for all query without
a significant decline in the STD performance of IV queries.

The recognition confidence measure (RCM) used as addi-
tional ASR-derived feature is based only on the ASR output of
target document, and doesn’t cope with the similarity between
query and document. Therefore, we expect further improve-
ment of the STD performance by using recognition confidence
measure considering similarity with the query [6].
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