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Abstract
Recently, the learning hidden unit contributions (LHUC)

method is proposed for the adaptation of deep neural network
(DNN) based acoustic models for automatic speech recognition
(ASR). In LHUC, a set of speaker dependent (SD) parame-
ters is estimated to linearly recombine the hidden units in an
unsupervised fashion. Although LHUC performs considerably
well, the gains diminish when the availability of the adaptation
data amount decreases. Moreover, the per-speaker footprint of
LHUC adaptation is in thousands and it is not desirable. There-
fore, in this work, we propose the subspace LHUC, where the
SD parameters are estimated in a subspace and connected to
various layers through a new set of adaptively trained weights.
We evaluate the subspace LHUC in the Aurora4 and AMI IHM
tasks. Experimental results show that the subspace LHUC out-
performs standard LHUC adaptation. With utterance-level fast
adaptation, the subspace LHUC achieved 11.3% and 4.5% rel-
ative improvements over the standard LHUC for the Aurora4
and AMI IHM tasks respectively. Furthermore, the subspace
LHUC reduces the per-speaker footprint by 94% over the stan-
dard LHUC adaptation.
Index Terms: Automatic Speech Recognition, Speaker Adap-
tation, LHUC.

1. Introduction
All machine learning techniques including DNNs are suscep-
tible to performance degradations due to the mismatches be-
tween the training and testing conditions. The mismatch caus-
ing variabilities can be normalized by transforming the model to
match testing conditions or by augmenting the runtime features
to match the model. In ASR, speaker adaptation techniques are
used to minimize the mismatch between the training and testing
conditions due to the speaker variability.

Maximum a posteriori (MAP) [1] and maximum likelihood
linear regression (MLLR) [2, 3] are commonly used to adapt
GMM-hidden markov model (HMM) systems. In addition,
speaker adaptive training (SAT) has been applied to GMM-
HMM systems [4, 5]. Speaker adaptation for DNNs is impor-
tant as it reduces error rates significantly [6, 7, 8, 9, 10, 11, 12].
However, it is difficult to interpret DNNs as meaningful struc-
tures as it is possible for GMMs. Therefore, DNN adaptation is
challenging, especially when performed with a small amount of
data in an unsupervised fashion. A popular approach for com-
bining the GMM-HMM adaptation techniques with the DNNs
is to train the tandem systems [13, 14, 15]. In tandem systems,
a DNN is trained to extract bottleneck features to train a GMM-
HMM system. Furthermore, In [16], temporally varying weight
regression (TVWR) framework [17] is used to combine DNN
and GMM acoustic models to improve the ASR robustness.

DNN Adaptation techniques can be categorized into two
broad approaches: test-only adaptation (simply refers to as

adaptation), and adaptive training. Adaptation methods re-
duce the mismatch by changing a well-trained model to match
the test condition, whereas adaptive training reduces the mis-
match during training. The adaptation methods can be cat-
egorized into 3 classes: linear transformation based adapta-
tion, subspace or subset adaptation and regularized adaptation.
Linear transformation based adaptation methods augment the
original DNN model with a condition dependent linear layer
[18, 19, 20, 21, 22, 23]. In subspace or subset methods, the
adaptation is performed to a subset of model parameters or on
a pruned model [24, 25, 26, 27, 28, 29, 30, 31]. Regularization
based adaptation helps to perform the adaptation more conser-
vatively [8, 32]. Adaptive training methods can be categorized
into cluster adaptive training (CAT) [33, 34], feature normaliza-
tion techniques like CMLLR [3], vocal tract length normaliza-
tion (VTLN) [35], and speaker-aware training (SaT) [9, 10, 6].

In this paper, we propose the subspace LHUC method
which performs the LHUC [31] adaptation in a subspace. In
LHUC, the adaptation data is used to estimate a set of condi-
tion dependent parameters for the adapting condition to linearly
recombine the hidden units in an unsupervised fashion. How-
ever, the performance of LHUC is low when fast adaptation is
performed with a small amount of data. In addition, the per-
speaker footprint of LHUC is also considerably huge. The pro-
posed subspace LHUC aims to address these issues. In sub-
space LHUC, condition dependent parameters are estimated in
a subspace and connected to various layers through a new set
of weights that are adaptively trained. First, we initialize the
condition dependent subspace from the i-vector during train-
ing and then during test-time adaptation, a shift is estimated for
each test condition. we have evaluated the proposed method
in two benchmark ASR tasks: the Aurora4 [36] and the Aug-
mented Multi-party Interaction (AMI) [37] individual headset
microphone (IHM) tasks.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed subspace LHUC method while in Section
3 the test-time adaptation is discussed. In Section 4 we give the
details of our experimental setup. The results are reported in
Section 5 and we conclude our work in Section 6.

2. Subspace LHUC
A DNN hidden layer learns a more abstract representation (hl)
from the input to that layer (hl−1) and the output layer classifies
the targets using a softmax function.

hl = σ(Wlhl−1 + bl) (1)

where σ is the sigmoid activation function, Wl is the weight
matrix for layer l, and bl is the bias vector for layer l, respec-
tively.

The adaptation methods that employ a SD feature transfor-
mation on the W l like LIN [18], LHN [23], LON [19] can be
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represented as follows:

hl
s = σ(WlAl

sh
l−1 + bl) (2)

where Al
s is the SD transformation matrix for layer l.

However, in these adaptation methods, estimating the full
matrix Al

s usually introduce millions of SD parameters. There-
fore, it is possible to reduce the per-speaker footprint by esti-
mating the diagonal elements of Al

s.

Al
s = diag(al

s) (3)

In LHUC adaptation, an additional constraint is applied to
the diagonal elements which restrict them in the range of [0, 2]
as given in equation 4.

al
s = 2× σ(rls) (4)

where rls is the SD parameter vector for speaker s of layer l
and these rls parameter values are estimated for the test speaker
using the adaptation data.

In the subspace LHUC method, we propose to learn rls us-
ing a low-dimensional speaker representation as given below:

rls = Ulvs (5)

where vs is a low dimensional vector for speaker s, and Ul is
the connecting weight matrix for layer l and is learned using the
training data. Furthermore, this method reduces the per-speaker
footprint considerably as |vs| � |rls|. In this paper, we use
the i-vector as the low dimensional representation, however, it
is possible to use other representations like bottleneck vectors.

The vs is estimated independent of the DNN training,
therefore adding a nonlinear layer specific to vs enables to learn
a more abstract representation during DNN training. In addi-
tion, it allows to learn a representation that is more suitable for
scaling the hidden units of the original model.

v̂s = σ(Γvs), (6)

rls = σ(Ulv̂s) (7)

where Γ is the transformation matrix for the repesentation vs.

3. Test-time Adaptation
In our previous work [7], we showed that it is possible to com-
bine adaptative training with test-time discriminative adaptation
methods to improve the performance. Based on that result we
propose to use unsupervised adaptation with subspace LHUC.
In our method, the adaptation can be conducted in one of the
two ways as mentioned below. We describe these ways of adap-
tation to the model with the i-vector specific nonlinear layer.
The adaptation of the model with direct connections to the i-
vector is similar.

3.1. Shift Adaptation

In shift adaptation, given the adaptation data from speaker s, we
estimate a shift δls for all the layers as given in equation 8.

rls = Ul(v̂s + δls) (8)

Table 1: The number of adaptation parameters for each tech-
nique. |vs| is the dimensionality of the i-vector and the |v̂s| is
the dimensionality of the i-vector specific hidden layer.

Adaptation Technique Number of Speaker Parameters

Shift |vs|+ l × |v̂s|
Constrained Shift |vs|+ |v̂s|

3.2. Constrained Shift Adaptation

In constrained shift adaptation, this shift for speaker s is shared
among all the layers as given in equation 9.

rls = Ul(v̂s + δs) (9)

The choice of the adaptation technique depends on factors
like the quality of hypotheses, per-speaker footprint require-
ments and the amount of available adaptation data. Therefore,
we have summarized the number of adaptation parameters for
the two techniques in Table 1. We evaluate each technique in
section 5.

We summarize the major steps in the subspace LHUC
method below.

1) Train the initial DNN model. (Wl and bl for )

2) Using i-vectors (vs) for training speakers, learn Ul, Γ while
keeping initial model weights fixed.

3) Extract the i-vectors for testing speakers.

4) Perform shift (δls) or constrained shift (δs) adaptation.

5) Perform final decoding.

4. Experimental Setup
4.1. Aurora4

We use the Aurora4 multi-condition training set with 83 speak-
ers for training and the development set with 10 speakers for
validation. The results are reported on the test set with 8 speak-
ers.

First, we extracted the MFCC features from the speech
using a 25-ms window and a 10-ms frame-shift. We obtain
the LDA features by first splicing 7 frames of 13-dimensional
MFCCs and then projecting downwards to 40 dimensions using
LDA. A single semi-tied covariance (STC) transformation [38]
is applied on top of the LDA features. The GMM-HMM system
for generating the alignments for DNN training is trained on top
of these 40 dimensional LDA+STC features.

The DNN-HMM baseline is trained on the LDA+STC fea-
tures that span a context of 11 neighboring frames. Before be-
ing presented to the DNN, cepstral mean variance normalization
(CMVN) is performed on the features globally. To train the net-
work, layer-wise discriminative pre-training is used. The initial
DNN has 7 sigmoid hidden layers with 2048 units per layer, and
2031 Senones as the outputs. All the DNNs are trained to opti-
mize the cross-entropy criterion with a mini-batch size of 256.
We use computational network toolkit (CNTK) [39] to train the
DNNs. The Kaldi toolkit [40] is used to built the GMM-HMM
systems and for the i-vector extraction. The i-vectors are trained
on top of the same 40 dimensional LDA+STC features. The
UBM consist of 128 Gaussians. We extracted i-vectors that are
of 100 dimensions. For speaker-level experiments, we used the
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Table 2: Word Error Rates (WER %) for Models trained on LDA
features

Model Eval Set #Speaker Params
Baseline 11.9 -
+ LHUC 10.0 2048*7 = 14336

speaker i-vector and for utterance-level experiments, we used
utterance-level i-vectors. We use all the test speaker data for the
speaker i-vector extraction. All the decodings are performed
with the pruned 5K trigram language model of WSJ0.

4.2. AMI IHM

For the next set of experiments, we used the AMI IHM corpus
which contains about 100 hours of meetings conducted in En-
glish. We use the ASR split [41] of the corpus where the 78
hours of the data is used for training while about 9 hours each
is used for evaluation and development sets. We use 90% of the
training set for training and the rest is used as the validation set.
The results are reported in the evaluation set.

For AMI experiments, we follow exactly the same steps
mentioned in the Aurora4 experimental setup to generate the
LDA+STC features. The DNN baseline is trained on the same
LDA+STC features and has 6 sigmoid hidden layers with 2048
units per layer, and around 4000 Senones as the outputs. All
the DNNs are trained to optimize the cross-entropy criterion
with a mini-batch size of 256. As in Aurora4 experiments, we
use CNTK to train the DNNs and Kaldi toolkit to train GMM-
HMM systems as well as for i-vector extraction. For decodings,
we use the trigram language model as used in Kaldi which is an
interpolation of trigram language models trained on AMI and
Fisher English transcripts.

5. Results
5.1. Aurora4 Results

The Table 2 reports the performance of the baseline system
(11.9) and the improvement that can be achieved by perform-
ing LHUC per-speaker. As it can be clearly seen, LHUC im-
proves the performance significantly (from 11.9 to 10.0). It is
worth highlighting that this improvement is similar to the im-
provements reported in the literature.

We present our speaker-level subspace LHUC adaptation
results in Table 3. Both subspace LHUC with direct connec-
tions to the speaker i-vector (M1) and subspace LHUC with the
i-vector specific nonlinear layer (M2) approaches report sim-
ilar improvements over the baseline system when none of the
adaptation techniques are employed. However, M1 and M2 ap-
proaches performs differently with (test-time) adaptation. As
it can be clearly seen, when shift adaptation is used M2 (9.7)
performs considerably better than M1 (10.0). The trend is dif-
ferent for constrained shift adaptation where the performance
of M1 (9.8) is better than the that of M2 (9.9). This behav-
ior can be explained as follows. The shift adaptation is more
powerful than the constrained shift adaptation due to the higher
number of speaker parameters. However, the condition-specific
layer allows theM2 to learn a more robust representation that is
suitable for adaptation. Therefore, when M2 is used with shift
adaptation, it performs better and constrained adaptation limits
the adaptation power due to the small number of parameters. In
contrast, M1 is more sensitive to the adaptation changes than

Table 3: The performance comparison of speaker-level sub-
space LHUC adaptation. In M1, the i-vectors are directly con-
nected whereas in M2, i-vector specific nonlinear layer is used.

Adaptation Technique M1 M2 #Speaker Params

None 11.0 11.0 100

shift 10.0 9.7 800

constrained shift 9.8 9.9 200

Table 4: WER % for Models trained on LDA features with
utterance-level LHUC adaptation

Model Eval Set
Baseline 11.9

+ utterance-level LHUC 11.5

M2. Therefore, it performs better with the constrained shift
adaptation where the number of adaptation parameters is small.
Moreover, it is worth highlighting both subspace LHUC models
perform better than the standard LHUC. Furthermore, subspace
LHUC reduces the per-speaker footprint by 94.4% and 98.6%
with shift and constrained shift adaptation respectively.

All the above results are about performing speaker-level
adaptation. We are interested to see how these methods per-
form when a small amount of adaptation data is available. To
investigate this, we conducted utterance-level adaptation. The
utterance-level adaptation with standard LHUC is reported in
Table 4. As expected, the performance improvement (from 11.9
to 11.5) for utterance-level adaptation is considerably smaller
for standard LHUC.

In Table 5, we present the results of the utterance-level ex-
periments for subspace LHUC. Even without any adaptation,
both M1 (10.8) and M2 (10.8) perform significantly better than
the standard LHUC (11.5). In addition, when test-time adap-
tation is used, performance improves significantly with the best
value of 10.2 forM2 with constrained shift adaptation. For both
M1 and M2, the constrained shift adaptation perform signifi-
cantly better than the shift adaptation. This is clearly due to the
smaller number of parameters in constrained shift adaptation
that allows robust adaptation with smaller amounts of adapta-
tion data.

Since constrained shift adaptation outperforms shift adap-
tation for utterance-level experiments of subspace LHUC, it is
worthwhile to investigate the utterance-level performances for
smaller subspace dimensions. In Figure 1 we investigate the
effect of the subspace dimensionality for utterance-level sub-
space LHUC for the model with i-vector specific nonlinear layer
(M2). As it can be clearly seen, the performance improved con-
siderably when the subspace dimensionality is increased from
10 to 25 and 25 to 50 for both i-vector initialized and con-

Table 5: The performance comparison of utterance-level sub-
space LHUC adaptation

Adaptation Technique M1 M2

None 10.8 10.8

shift 10.6 10.5

constrained shift 10.4 10.2
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Figure 1: WER (%) for various subspace dimensions (|v̂s|) of
subspace LHUC for utterance-level adaptation.

strained shift adapted systems. However, for subspace dimen-
sionalities of 50, 75, 100 the performances are similar.

5.1.1. Histogram Analysis

In this section, we analyze the amplitude parameters of the
LHUC adaptation for both speaker-level and utterance-level
adaptation experiments. The first and second columns of Fig-
ure 2 show the histograms for speaker-level and utterance-level
experiments respectively. For speaker-level adaptation, the his-
togram shapes for both standard LHUC and subspace LHUC af-
ter adaptation is similar. In contrast, with utterance-level adap-
tation, standard LHUC amplitude values hardly changes (note
that the x and y scales are different for utterance-level standard
LHUC plot from other plots). However, both speaker-level and
utterance-level plots for subspace LHUC before adaptation are
similar. This is because Ul , Γ is learned from the training
data and utterance-level i-vector is extracted independently of
the DNN. Therefore, subspace LHUC provides a better initial-
ization for adaptation.

5.2. AMI Results

In the next set of experiments, we perform speaker-level and
utterance-level adaptation on AMI IHM dataset. For AMI, we
only used the subspace LHUC model with the i-vector specific
hidden layer (M2). Furthermore, we use |v̂s| = 50 for all AMI
IHM subspace LHUC models.

Table 6 shows the results for speaker-level adaptation. Both
standard LHUC and subspace LHUC improved the perfor-
mance significantly. Similar to the Aurora4 experiments, sub-
space LHUC with shift adaptation reported the best perfor-
mance (25.9 %). In addition, when subspace LHUC is used
with shift adaptation the per-speaker footprint reduces by 96.7
% over the standard LHUC adaptation. The per-speaker foot-
print reduction is 98.8% for subspace LHUC with constrained
shift adaptation.

Table 7 reports the results for the utterance-level adaptation
on AMI IHM corpus. As shown in the table, standard LHUC re-
ported no improvements when utterance-level adaptation is per-
formed. However, subspace LHUC improved the performance
for both before and after the adaptation. A relative improvement
of 3.4% is reported with subspace LHUC before the adaptation.
The performance improved further with constrained adaptation
to 4.5% relatively.

Figure 2: Histrograms for the amplitude values of standard
LHUC, subspace LHUC before adaptation and subspace LHUC
after adaptation for both speaker-level and utterance-level adap-
tation.

Table 6: Eval Set WER % for Models trained on AMI IHM task
for speaker-level experiments

Model WER #Speaker Params
Baseline 29.0 -

+speaker-level LHUC 26.1 12288
M2 27.7 100

+ constrained shift 26.2 150
+ shift 25.9 400

6. Conclusions
In this work, we have proposed the subspace LHUC, where
the SD parameters are estimated in a subspace and connected
to various layers through a new set of adaptively trained
weights. We evaluated the subspace LHUC in the Aurora4
and the AMI IHM tasks. Experimental results showed that
the subspace LHUC outperforms standard LHUC adaptation.
With utterance-level fast adaptation, subspace LHUC achieved
11.3% and 4.5% relative improvements over the standard
LHUC for the Aurora4 and AMI IHM tasks respectively. Fur-
thermore, the subspace LHUC reduced the per-speaker footprint
at least by 94% over the standard LHUC adaptation.

Table 7: Eval Set WER % for Models trained on AMI IHM task
for utterance-level experiments

Model WER
Baseline 29.0

+utterance-level LHUC 29.0
M2 28.0

+ constrained shift 27.7
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