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Abstract
Continuous space language models (CSLMs) have been

proven to be successful in speech recognition. With proper
training of the word embeddings, words that are semantically
or syntactically related are expected to be mapped to nearby
locations in the continuous space. In agglutinative languages,
words are made up of concatenation of stems and suffixes and,
as a result, compositional modeling is important. However,
when trained on word tokens, CSLMs do not explicitly consider
this structure. In this paper, we explore compositional model-
ing of stems and suffixes in a long short-term memory neural
network language model. Our proposed models jointly learn
distributed representations for stems and endings (concatena-
tion of suffixes) and predict the probability for stem and ending
sequences. Experiments on the Turkish Broadcast news tran-
scription task show that further gains on top of a state-of-the-
art stem-ending-based n-gram language model can be obtained
with the proposed models.
Index Terms: Language modeling, long short-term memory,
sub-word-based language modeling, agglutinative languages

1. Introduction
Continuous space language models (CSLMs) have been shown
to yield very good performances in speech recognition. The
main idea in CSLMs is to embed words in a continuous space
and to estimate the probability of word sequences using neu-
ral networks. The success of CSLMs, i.e., feedforward neural
network language models (NNLMs), over conventional n-gram
language models is mostly explained by the improved gener-
alization capability of CSLMs, especially for rare and unseen
events. In conventional n-grams, words are treated as discrete
entities. Whereas, CSLMs embed words in a continuous space
with the expectation that semantically or syntactically related
words will be mapped to nearby locations in the continuous
space. As a result, NNLMs are expected to achieve better gener-
alization for unseen or rare n-grams, since a small change in the
features will result in a small change in the probability estima-
tion. A comparative study [1] of conventional n-gram language
models with feedforward NNLMs has advocated that CSLMs
have improved generalization capability by showing that feed-
forward NNLMs improve over conventional n-gram language
models, especially when the latter model backs off to lower or-
ders.

While feedforward NNLMs [2, 3, 4, 5] predict the next
word from a limited history (typically 3-4 previous words), re-
current neural network (RNN) language models [6, 7] have re-
laxed the limited history restriction by using a self-loop at the
hidden layer. Even though the recurrent connections at the hid-
den layer potentially allow for a very long-range of history, in
practice RNNs cannot effectively use information beyond about

5–10 time steps back, due to the well-known “vanishing gra-
dient” problem [8]. The gradient of the error function decays
exponentially over time and this reduces the influence of inputs
far back in time. Long short-term memory (LSTM) neural net-
works address this limitation by replacing the nonlinear units
in the hidden layer of an RNN with memory blocks that can
store values for arbitrary amounts of time [9]. LSTM neural
networks have also been applied to language modeling [10] and
LSTM NNLMs have been shown to yield superior performance
than RNN language models [11, 12] in speech recognition.

In agglutinative languages, words are made up of concate-
nation of stem and suffixes. As a result many unique word
forms evolve from the same stem, resulting in very large vo-
cabularies. Therefore, using words as recognition units results
in high out-of-vocabulary (OOV) rates in speech recognition.
Increasing the vocabulary size reduces the OOV rate, however,
this introduces data sparsity resulting in non-robust estimates
in conventional n-gram language modeling. The most common
solution in speech recognition of agglutinative languages is to
use sub-word units in language modeling [13, 14]. Especially,
for Turkish, an agglutinative language with rich morphology,
stems and endings (concatenation of suffixes) as recognition
units provide a good compromise between OOV rate and data
sparseness, yielding better accuracies than words [14].

CSLMs can be an ideal choice for agglutinative and mor-
phologically rich languages due to their generalization ability
for rare and unseen events. However, when trained on word
tokens, CSLMs do not explicitly consider compositionality in
word formation in these languages. One way of integrating
word compositions into CSLMs is to use stem and suffix fea-
ture vectors and to represent the word as the concatenation of
these feature vectors. This concatenation approach was investi-
gated in feedforward NNLMs trained for a combined word and
morpheme vocabulary and speech recognition accuracy was im-
proved for morphologically rich Egyptian Arabic language [15].
Another way of integrating word compositions into CSLMs is
to follow an additive approach, such that, a word can be repre-
sented as the sum of vectors representing its morphemes. This
approach was explored in LSTM NNLMs trained for a word
vocabulary and and speech recognition accuracy was improved
for highly inflectional Russian language [16].

In this paper, we investigate compositional LSTM NNLMs
for Turkish and propose a new LSTM architecture for integrat-
ing word compositionality into sub-word-based language mod-
eling. We explore both the concatenative and additive approach
in the proposed LSTM NNLM architecture. The rest of the pa-
per is organized as follows: Section 2 explains the composi-
tional LSTM NNLM. Experiments and results are described in
Section 3, and Section 4 presents conclusions.

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-12393494



2. Compositional Neural Network
Language Model

In this section we will briefly explain the LSTM neural network
language model and then give the details of the proposed com-
positional LSTM NNLM architectures.

2.1. LSTM Neural Network Language Model

Long Short-Term Memory neural networks are recurrent neu-
ral networks proposed to solve the vanishing gradient problem
of RNNs. Figure 1 shows a basic RNN/LSTM language model
architecture. Here, the neural network language model is com-
posed of input, projection, hidden and output layers. Each word
in the vocabulary is encoded by 1-to-V coding where V is the
size of the input vocabulary. In 1-to-V coding, each word in
the vocabulary is represented by a V dimensional sparse vector
where only the index of that word is 1, shown with a dark spot
at the input layer in Figure 1, and the rest of the entries are 0.
Then the input vector is mapped into a linear projection layer.
The projection layer is followed by a recurrent hidden layer and
the hidden layer is connected to the output layer. Each target
at the output layer corresponds to a word in the vocabulary so
that the output layer produces a probability distribution over the
predicted word. For instance, the dark spot at the output layer
in Figure 1 represents the probability of the i’th word in the
vocabulary given the previous words in the input sequence as
the history. Since the computational complexity of the model is
dominated by the multiplications at the output layer, a shortlist
containing the most frequent N words in the input vocabulary
is used as the output vocabulary. An out-of-output-vocabulary
token is used to predict the probability of the words not seen in
the output vocabulary.

Formally, given an input vector sequence X =
{x1, · · · , xT } and an output vector sequence Y =
{y1, · · · , yT }, RNN activations are calculated as follows:

ht = tanh(Wxhxt +Whhht−1 + bh) (1)
yt = Whyht + by (2)

where ht denotes the hidden layer vector, Wxh denotes the
input-to-hidden-layer weight matrix, Whh denotes the hidden-
to-hidden-layer weight matrix and Why denotes the output-to-
hidden-layer weight matrix. The values bh and by denote the
hidden and output layer biases, respectively. Note that in Equa-
tion 1, xt represents the projection layer vector of wt, the word
at time t in the input word sequence.

In RNN language modeling, the conditional word proba-
bilities P (w|h) are calculated using the softmax operation as
follows:

p(wt = i|wt−1, ht−2) =
exp(yit)∑N
j=1 exp(y

j
t )

(3)

where yit represents the ith element of the output vector yt.
Note that using the previous word as well as the previous hid-
den layer state while predicting the probability of the next word
in RNNs translates to predicting the n-gram probability using a
long-range of previous words in the history.

Even though RNNs potentially utilize arbitrarily long histo-
ries, in practice the effective context length of an RNN is quite
limited. LSTMs remedy this limitation by replacing the nonlin-
ear units in the hidden layer of an RNN with memory blocks
containing memory cells for storing values; and multiplicative
gates for reading (output), writing (input), and resetting (forget)

these values. A memory cell can be used to store information
for long periods, and gates collect activations from both inside
and outside a memory block to update a memory cell’s value.

The hidden layer activations of an LSTM neural network is
computed as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (4)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (5)
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (6)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (7)
ht = ot tanh(ct) (8)

where it, ft, ot and ct represent the input gate, forget gate,
output gate and cell activation vectors at time t, respectively.
The matrices W∗∗ denote the weight matrices between various
layers, gates, and cells; e.g., Wxi represents the weight matrix
between the input layer and the input gates. The gate and cell
bias terms are denoted as bi, bf , bo and bc; and σ(·) is the logis-
tic sigmoid function. For language modeling, after computing
ht, conditional word probabilities at the output layer are calcu-
lated using Eqs. (2) and (3). Since LSTMs solve the vanishing
gradient problem in RNNs, the n-gram probabilities in LSTM
neural network language models contain a much longer history
context than RNN language models.

2.2. Compositional LSTM Language Model

The main idea in the compositional neural network language
model is to transfer word compositions into the neural network
architecture. NNLMs are expected to learn word similarities, in
other words, they should learn to map similar words to nearby
locations in the continuous space. For instance the continuous
space representation for the word “France” is expected to be
close to the continuous space word representation of other coun-
tries, i.e.. “Germany”, and the relation between the singular and
plural forms of the same word, i.e., “cat-cats”, is expected to
be encoded in the continuous space vectors. It has been shown
that with proper training of the word embeddings, linguistic re-
lations can be learned by the word embeddings and simpler ar-
chitectures have been shown to be more successful than RNN
LMs in learning syntactic and semantic relations [17, 18]. How-
ever, these analyses were performed for English and the type of
relations that might be learned by LSTM NNLMs and the ef-
fect of these models on speech recognition performance have
not been fully investigated for morphologically rich languages.

The proposed architecture for the compositional LSTM
Neural Network Language Model is shown in Figure 2. Here
the input vocabulary consists of stems and endings. Each stem
and ending in the vocabulary are encoded by 1-to-S and 1-to-E
codings where S and E are the number of stems and endings
in the input vocabulary. This input layer is followed by a 2d-
dimensional linear projection layer, where d-dimensional con-
tinuous space representations of stem and ending corresponding
to an input word are concatenated. The discrete to continuous
space mapping is a look-up table whose i’th row corresponds
to the continuous space feature representation of the i’th token
in the vocabulary, where the tokens are stems and endings. A
special symbol, φ, is used when a word has no ending and the
projection layer for that token is taken as a zero vector. Note
that Figure 2 shows the projection layer as the stack of two lin-
ear layers. We use this representation in order demonstrate both
the concatenative and additive approaches in the same figure. In
the concatenative approach, the weight matrix mapping the first
projection layer to the second one is an identity matrix and can
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Figure 2: Compositional RNN/LSTM architecture.

be ignored. In the additive approach, the weight matrix is used
to sum the concatenated projection vectors and the second stack
layer is a d-dimensional vector. Then the projection layer is fed
to the recursive hidden layer and the hidden layer is followed by
two output layers: (i) stem output layer for predicting the prob-
ability of the stem given the history, (ii) ending output layer for
predicting the probability of the ending given the history. After
predicting the probability distribution over the predicted stem,
a linear projection is applied to the stem output layer and a d-
dimensional projection layer is obtained for the predicted stem.
This projection layer is also fed to the ending output layer to
predict the probability of the ending. The ending output layer
also predicts the probability of the existence of an ending since
the predicted word might consist of a stem only. The empty end-
ing symbol, φ, is not included in the softmax operation for the
endings. The probability of the predicted ending at the output
layer is computed as follows:

P (et | st, st−1, et−1, ht−2)

=


P (φ | st, st−1, et−1, ht−2) for no ending,
(1− P (φ | st, st−1, et−1, ht−2))

×Pe(et | st, st−1, et−1, ht−2) otherwise.

Finally the probability of stem and the ending given the history
is computed as follows:

P (st, et | st−1, et−1, ht−2) = Ps(st | st−1, et−1, ht−2)

× P (et | st, st−1, et−1, ht−2).

The proposed architecture allows us to distinguish between the
vector spaces for stems and endings so that the neural network
might learn the groupings of similar stems and similar endings
separately.

3. Experimental Results
3.1. Baseline ASR System

In our research, we used word and stem+ending based LVCSR
systems developed for automatic transcription of Turkish
Broadcast News (BN). The acoustic model was built on a Turk-
ish BN corpus containing 184 hours of BN recordings with

Table 1: WERs for the word and stem+ending baseline systems.

Models Heldout (%) Test (%)
Baseline (word) 12.4 13.4
Baseline (stem+ending) 11.7 12.8

Kaldi [19] using deep neural networks. Separate held-out (3.1
hours) and test (3.3 hours) data were used to evaluate the system
performance. The Turkish web corpus [20] (182.3 M words)
collected from major news portals and the reference transcrip-
tions of the acoustic model training data (1.3 M words) were
used in building generic and in-domain language models re-
spectively for the BN transcription system. The word vocabu-
lary contains the most frequent 200 K words in the training data,
resulting in a 2% OOV rate on the test data. A Turkish morpho-
logical parser [20] was used to segment the words in text data
into stems and endings. A word was segmented into 1.5 units on
average. The most frequent 200K types in the segmented text
data were chosen as the vocabulary for the stem-ending-based
system, resulting in 0.2% OOV on the test data. Language mod-
els with interpolated Kneser-Ney smoothing were built using
SRILM toolkit [21]. 3-gram language models were built for
the word-based system and 4-gram language models were built
for the stem-ending-based system. Generic and in-domain lan-
guage models were linearly interpolated. The word error rate
(WER) results on heldout and test sets are given in Table 1.
Stem-ending-based system outperforms the word-based system
by 0.7% on the held-out data and 0.6% on the test data.

3.2. LSTM Language Models

LSTM NNLMs were trained on the reference transcriptions of
the acoustic model training data (1.3 M words). We have trained
a regular LSTM language model using the architecture given in
Figure 1 and two compositional language models, with addi-
tive and concatenate approaches, using the architecture given in
Figure 2. Among the 200 K types in the stem and ending vocab-
ulary, we used the most frequent 100 K types as the input vo-
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cabulary. The input vocabulary contains 85.6 K stems and 14.4
K endings. In order to reduce the computational complexity of
the models, we used a shortlist containing the most frequent 20
K types in the vocabulary. The output vocabulary contains ap-
proximately 16 K stems and 4 K endings. Stems and endings
in the input vocabulary were represented with 180-dimensional
vectors and LSTM NNLMs were trained with 300-dimensional
hidden layers.

3.3. Results

The ASR performance of the LSTM neural network language
models were evaluated in 100-best rescoring. LSTM neural net-
work language models were log linearly interpolated with the
baseline 4-gram stem+ending language model and the interpo-
lation weights were optimized using the simplex algorithm to
minimize the WER on the development set. We use the simplex
algorithm implementation in the SRILM toolkit [21]. The re-
sults given in Table 2 show the effectiveness of LSTM NNLMs
for different architectures. Even though all LSTM NNLMs
outperform the baseline stem-ending-based n-gram language
model, the concatenative and the additive architectures do not
provide any further gain over their regular counterpart.

Table 2: WERs for the LSTM NNLMs

Models Heldout (%) Test (%)

Baseline (stem+ending) 11.7 12.8
LSTM NNLM (regular) 10.9 12.1
LSTM NNLM (concatenative) 11.0 12.1
LSTM NNLM (additive) 11.0 12.1

4. Analysis and Discussion
In order to analyze the differences between the regular and
compositional LSTM NNLMs, we visualized the projection
layers using t-Distributed Stochastic Neighbor Embedding (t-
SNE) [22]. For clarity, the most frequent 5 K types were in-
cluded in the analysis. A comparison of the plots for the regu-
lar LSTM NNLM presented in Figure 3 and the compositional
(concatenative) LSTM NNLM given in Figure 4 clearly indicate
that the latter approach is able to provide a separation of stems
and endings. Furthermore, the compositional approach yields
meaningful clusters for the endings. For example, the cluster
in the far right in Figure 4 contains the following endings corre-
sponding to possessive suffixes: +in +ın +ların +lerin +’nin +nin
+’ın +nin +’in +nun +lerinin +larının +inin +un +’nın +sinin
+sının. This example suggests that the continuous space repre-
sentation of these endings are close to each other and that the
NNLM is able to learn that although the endings such as +in and
+ın are different in surface form, they correspond to the same
lexical form and serve the same morphosyntactic function.

5. Conclusions
In this paper we have investigated various continuous space lan-
guage models for an agglutinative language, Turkish. In partic-
ular, we have proposed compositional neural network language
models based on the morphological segmentation of words into
stems and endings. The proposed LSTM NNLM models jointly

Figure 3: t-SNE plot of embeddings for the regular LSTM
NNLM (blue: stem, red: ending)

Figure 4: t-SNE plot of embeddings for the compositional (con-
catenative) LSTM NNLM (blue: stem, red: ending)

learn distributed representations for stems and endings and pre-
dict the probability for stem and ending sequences. The ex-
perimental results on the Turkish Broadcast news transcription
task show that the LSTM NNLMs yield further gains on top of
a state-of-the-art stem-ending-based n-gram language model.
However, the compositional LSTM NNLMs do not provide any
further gains over the regular LSTM NNLM. We would like to
note that for these experiments the LSTM NNLMs were trained
on a relatively small text corpus and we are currently working
on extending this work to a larger text corpus.
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