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Abstract
User-machine interaction is important for spoken content re-
trieval. For text content retrieval, the user can easily scan
through and select on a list of retrieved item. This is impos-
sible for spoken content retrieval, because the retrieved items
are difficult to show on screen. Besides, due to the high degree
of uncertainty for speech recognition, the retrieval results can
be very noisy. One way to counter such difficulties is through
user-machine interaction. The machine can take different ac-
tions to interact with the user to obtain better retrieval results
before showing to the user. The suitable actions depend on
the retrieval status, for example requesting for extra information
from the user, returning a list of topics for user to select, etc. In
our previous work, some hand-crafted states estimated from the
present retrieval results are used to determine the proper actions.
In this paper, we propose to use Deep-Q-Learning techniques
instead to determine the machine actions for interactive spoken
content retrieval. Deep-Q-Learning bypasses the need for es-
timation of the hand-crafted states, and directly determine the
best action base on the present retrieval status even without any
human knowledge. It is shown to achieve significantly better
performance compared with the previous hand-crafted states.
Index Terms: Interactive Retrieval, Deep-Q-Network, End-to-
End, Language Model Retrieval

1. Introduction
Interactive Information Retrieval (IIR)[1, 2] enhances a retrieval
system by incorporating the user-system interaction into the re-
trieval process. The eventual goal of IIR is to guide the users
to smoothly find out the desired information through the inter-
active process[3, 4]. Previous interactive systems, for exam-
ple, the city guide [5, 6] or the movie browser [7, 8], usually
had the content to be retrieved in text form stored in a semi-
structured database, and made major efforts on transforming
users natural language queries into semantic slots for subse-
quent database search. Here we focus on interactive retrieval
of multimedia[9, 10] or spoken content[11], which is radically
different form text.

There are several reasons which make user-system inter-
action important for spoken content retrieval. Firstly, speech
recognition is still far from being perfect, and it inevitably pro-
duces errors which make the retrieval results uncontrollable.
Moreover, the subword-based technologies are widely used in
spoken content retrieval to deal with the OOV issue. These tech-
niques result in higher recall rates, but also lead to lower preci-
sion rates. So very often many retrieved results are completely
wrong. Also, it’s difficult to show the retrieved multimedia or
spoken information items on the screen, and it’s hard for the
users to scan through the retrieved results on the screen[12].
IIR is effective in updating the user instructions to boost the
retrieval performance.

In several previous works [13, 14, 15], Markov Decision
Process (MDP) is used to model such spoken content IIR. An
earlier attempt is to let the user select among a list of retrieved
key terms. However, this approach turned out to be inefficient
for users. A different approach was then proposed, in which
the system has more actions to choose from and decides the
most suitable action based on the present status including the
present retrieved results, the number of interaction turns, and so
on. Some successful results have been achieved by first esti-
mating some human-defined indicators from a set of features as
the states and then selecting the actions based on the estimated
states [14, 15]. However, such hand-crafted states may be in-
adequate for the purpose. And in those approaches, the state
estimation and action selection are modeled as two cascading
blocks and trained independently. Without jointly estimating
the whole process, both of them can be sub-optimal.

In this paper, we propose to use deep reinforcement learn-
ing in IIR for spoken content. Deep reinforcement learning
has recently achieved great renown and success, and deep-Q-
Network (DQN) serves as a capable solution to learn from very
raw inputs [16, 17]. In IIR with this approach, DQN can take
the features originally used for state estimation as the input,
and decide the actions directly. Two major contributions were
made in this paper. First, we show that the hand-crafted states
used previously, like average precision, cannot represent the re-
trieval status very well, and cascading the estimation of such
states with action selection based on such states is definitely
not optimal. This is why the DQN proposed here, which is an
end-to-end approach, achieved remarkable improvements. Sec-
ondly, through utilizing DQN, we show that even using the raw
feature–the retrieval scores from the search engine–as the DQN
input outperformed the previous approach with hand-crafted
states.

2. Proposed Approach
The framework for the proposed approach is depicted in Fig. 1.
At the left hand side, the user first enters a query q into the sys-
tem. With the user query q or plus other feedback information
from the user during the interaction, the retrieval module (in the
upper middle) described in Section 2.1 will generate a list of
retrieved result.

The system takes actions based on the retrieved results to
interact with the user as discussed in Section 2.2. A set of fea-
tures extracted from the retrieved results (at the upper right cor-
ner), and the dialogue manager (in the lower middle) determin-
ing the action based on the extracted feature is introduced in
Section 2.3 and 2.4 respectively. In the dialogue manager, there
are paths (A) and (B) for determine the actions. Path (A) (in
Section 2.4.1) is the previous approach with estimated states,
while path (B) (in Section 2.4.2) uses the deep reinforcement
learning proposed in this paper.
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Figure 1: Block diagram of the proposed approach compared to the previous approach in Path (A) (dash line)

2.1. Retrieval Module

2.1.1. Language Modeling Retrieval Module

The basic idea of a language model based retrieval framework
is to represent the query q and a document d both as language
models θq and θd. More details about estimating θd for spo-
ken documents are left out here [18, 19]. The relevance score
S(q, d) for the given query q and a document d, which is
used to rank the documents d during the retrieval process, is
evaluated based on the KL divergence between θq and θd, or
S(q, d) = −KL(θq‖θd). Furthermore, the user may desig-
nate a set of terms to be irrelevant to what he/she is seeking
for, which can be modeled as a negative information model θN .
Thus, the complete relevance score S(q, d) considers both the
query model θq and the negative information model θN as be-
low.

S(q, d) = −[KL(θq‖θd)− βKL(θN‖θd)], (1)

where β as an adjustable parameter [19, 20].

2.1.2. Query-Regularized Mixture Model for Query Expansion

After receiving the feedback from the user during the iteration,
the system generates a new query model θ′q . We adopt the
query-regularized mixture model [20, 21, 22] previously pro-
posed for pseudo-relevance feedback to estimate the new query
models θ′q . However, in this query expansion process, the new
query model may be tainted by unrelated information in the
pseudo-relevant documents. We therefore regularize the query
models using a key term set, which is initially composed of the
original query and can be expanded throughout the interactive
session.

2.2. Actions to be taken by the system

In order to help the user offer useful information, with which the
system can retrieve documents better matched to the user’s goal,
five actions are defined for user-system interaction as presented
below.

(a) Return Documents: The dialogue manager returns the
current list of retrieved results ranked by Sk(q, d) at the present
time k in decreasing order and asks the user to select a relevant
document.

(b) Return Key Term: the dialogue manager asks the user
whether a key term t∗ is relevant.

(c) Return Request: the dialogue manager asks the user to
provide an additional query term t̂.

(d) Return Topic: The dialogue manager returns a list of
topics generated with latent topic models [23, 24, 25, 26] and
asks the user to select one.

(e) Show list: The dialogue manager shows the retrieved
results ranked by Sk(q, d) to the user and ends the interactive
session.

With actions (a),(b),(c),(d) the system receives extra infor-
mation from the user and generates a new query q′ accordingly
for the next step retrieval. Action (e) ends the interactive session
and shows the retrieved results to the user.

2.3. Feature Extraction

Sets of features describing the characteristics or present status
of the retrieved results from the search engine in Section 2.1
is extracted, based on which the proper actions are selected in
Section 2.4. Two sets of features are tested here:

• Human Knowledge Feature: A set of features hand-
crafted based on human knowledge is extracted. These
features were used in the previous works [15]. Examples
for these features include clarity score [27], query scope
[27], the simplified query clarity score (SCS) [27], am-
biguity score [28], similarity between the query and the
collection [29], weighted information gain (WIG) [30]
and query feedback [30].

• Raw Relevance Scores: Considering the power of deep
learning, the dialogue manager may be able to make de-
cisions simply based on the raw relevance scores of re-
trieved items without any human knowledge. Here the
relevance scores of the top-N documents in the retrieved
results are taken as the features with N -dimensions.

2.4. Dialogue Manager

The dialogue manager is based on Markov Decision Process
(MDP). MDP [31] is defined as a tuple {S,A, T ,R, γ}, where
S is the set of states, A the set of actions, T (s′|s, a) is the
transition probability of ending up in state s′ when executing
action a in state s,R is the reward function, and γ the discount
factor. A mapping from a state s ∈ S to an action a ∈ A, or ac-
tion selection at each state, is a policy π. Given a policy π, the

944



value of the Q-function (Qπ : S ×A→ R) is the estimation
of the expected discounted sum of all rewards that can be re-
ceived over an infinite state transition path starting from state s
taking action π(s): Q(s, a) = E[

∑∞
k=0 γ

krk|s0 = s, a0 = a],
where rk is the reward received from the action ak taken at
state sk, and k is the sequence index for states and actions. The
optimal policy maximizes the value of each state-action pair:
π∗(s) = argmaxa∈AQ

∗(s, a), so finding an optimal policy
is equivalent to finding the optimal Q-function.

The reward of ak,the action taken at state sk, is defined as

rk = −Ck + τ [E(sk)− E(sk−1)]. (2)
E(s) is some retrieval quantity metric at the state s and Ck is
the estimated effort by the user to perform the action ak. τ is a
trade-off parameter between user effort and the retrieval quality
improvement.

2.4.1. Previous Approach: Estimating the hand-crafted state

The previous approach [14, 15] for the dialogue management
is path (A) in Figure 1. The underlying assumption behind this
approach is that the proper choice of the action can be made
by considering some evaluation metric for the retrieved results,
which is the average precision (AP) here. This assumption leads
to a two-stage process, shown as blocks A-1 and A-2, in the
dialogue manager of Fig.1. Block A-1 is the state estimation.
It takes the feature set extracted from the retrieved results in
Section 2.3 as the input, and estimates the AP for them, taken
as the state s in the Q-function for action selection. Block A-2
is for action decision. It uses fitted value iteration (FVI) [32] to
train a Gaussian mixture model (GMM) to approximate the Q-
value function Q(s, a) for each action a, and the system takes
the action a with the maximum Q(s, a).

This approach have several weaknesses. First, the evalua-
tion metric AP is not necessary a good representation for states.
AP simply indicates how well the retrieved results are. Empiri-
cal results have shown that even with the same AP, the optimal
actions can be different. However, it’s not easy to come up with
better state definition with human knowledge. Next, it’s not
able to fix the error margin for relatively weak state estimation,
because the state estimation (block A-1) and action selection
(block A-2) are separately trained rather than considered jointly.

2.4.2. Proposed Approach: Deep Reinforcement Learning

The proposed approach used Deep-Q-Network (DQN) to do
deep reinforcement learning of Q-function. DQN is able to
overcome the problems of the previous approach mentioned
above at least to some degree. As can be seem in path (B) of
Fig 1, the DQN directly generates the proper action from the
input features through the hidden layers. In this way the error
propagation for the two cascaded stages (block A-1 and block
A-2 in path (A)) is eliminated, and the machine automatically
learns from the features extracted from the retrieve module in-
cluding the human knowledge features and the raw relevance
scores of the retrieved results.

The DQN is a deep neural network (DNN) [33, 34]
with parameters θ to estimate the state-action value function
Q(s, a; θ)1. The input of the DQN is the features extracted in
Section 2.3, while its output dimension is the same as the num-
ber of possible actions a, and the output is the state-action value
Q(s, a; θ) for each action a in the action set A. The DQN is

1Because the state-action value function Q(s, a) here depends on
the deep neural network parameters θ, the function should be written as
Q(s, a; θ).

trained by iteratively updating the parameters θ. With parame-
ters obtained at the i-th iteration, denoted as θi, θ can be learned
by minimizing the following the loss function Li(θi) in (3) by
gradient descent.

Li(θ
i) = E

s,a,r,s′∼U(D)
[(ŷi −Q(s, a; θi))2]. (3)

D = {e1, e2, ..., et, ...eL} includes experiences et =
(st, at, rt, st+1) (taking action at at state st obtaining reward
rt and reaching state st+1 at the next time step) is a dataset
collected from many retrieval episodes to be used for train-
ing. The expression s, a, r, s′ ∼ U(D) in (3) means, instead
of using the current experience as prescribed by the standard
temporal-difference learning, the network is trained by sam-
pling mini-batches of experiences from D uniformly at ran-
dom. This method is referred to as experience replay, which
is a key ingredient behind the success of DQN. In this way the
efficiency in using the training data can be improve through re-
use of the experience samples in multiple updates, and the cor-
relation among the samples used in the update can be reduced
through the uniform sampling from the replay buffer [35, 17].

ŷi in (3) is defined as below:

ŷi = r + γ ·max
a′∈A

Q(s′, a′; θ−) (4)

where θ− represents the parameters of a fixed and separate tar-
get network, which is taken here as the parameters obtained
several iterations before. Freezing the parameters of the target
networkQ(s′, a′; θ−) for a fixed number of iterations while up-
dating the online network Q(s, a; θi) is another key innovation
for the success of DQN [35, 17], which improved the stability
of the algorithm.

3. Experiments
3.1. Experiment Setting

We used a broadcast news corpus in Mandarin Chinese recorded
from radio or TV stations in Taipei from 2001 to 2003 as the tar-
get document archive to be retrieved. There was a total of 5047
news documents with a total length of 198 hours. We used one-
best transcriptions and lattices for the spoken archive. We used a
tri-gram language model trained on 39M words of Yahoo news.
163 text queries and their relevant spoken documents (not nec-
essarily including the query terms) were provided by 22 gradu-
ate students. We used DQN with two and four hidden layers of
1024 nodes and relu as the activation function [36]. The DQN
framework is modified from an open-source code 2. Mean Av-
erage Precision (MAP) was selected as our retrieval evaluation
metric. The costs of actions were set empirically considering
the extra burden caused when the user provides feedback. And
10-fold cross validation was performed in all experiments.

We generated simulated users with the following behavior
for training the dialogue manager.

• (a) Return Documents: The simulated user viewed the
list from the top and chooses the first relevant document.

• (b) Return Key Term: Replied ”YES” if the key term ap-
peared in more than 50% of the relevant documents and
”NO” otherwise.

• (c) Return Request: Entered a key term based on Tf-idf
(term frequency-inverse document frequency).

• (d) Return Topic: Randomly returned one of the relevant
topics manually labeled by graduate students.

2https://github.com/spragunr/deep q rl
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Figure 2: Learning curves with either raw relevance scores
alone (for top-100 retrieved items) (dotted curves) or with hu-
man knowledge features in addition (solid curves) with different
DQN depths over lattice transcriptions.

Figure 3: Learning curves of DQN with 2 layers using different
sizes of relevance scores. N is the number of the top-N retrieved
items which raw relevance scores were used.

3.2. Result and Discussion

Table 1 shows the results in MAP and Return R =
∑T
k=0 rk

achieved on spoken content retrieval module based on either
one-best transcriptions (left half) or lattices (right half).
• (a) Baselines: (a-1) are the first-pass results without any

interaction, and their returns can be regarded as 0. (a-2) show
the results for taking random actions, repeating 1000 times to
estimate the MAP and expected return, and (a-3) are the results
of the previous work with state estimation.
• (b) DQN with different features: (b-1) are the results

when only the raw relevance scores were used. And (b-2)
combine the human knowledge features and the raw relevance
scores in (b-1).
• (c) Oracle: Obtained by brute-force search over every ac-

tion sequence whose length was less than 5, and picked the ac-
tion sequence with the highest return. It is considered as the
upper bound for the finite interactive scenario.

From (a-2), we notice that taking actions randomly is not
a good way to improve the retrieval process: although the sys-
tem gains extra information after every interaction, inefficient
requests from the system may also burden the user and yield
poor returns. The previous hand-crafted state approach in (a-3)
obtained much better performance than random actions in (a-2)
in terms of both MAP and return. Surprisingly, the proposed ap-
proach in (b-1) using DQN end-to-end reinforcement learning
only with raw relevance scores without any human knowledge
easily outperformed the results using plenty of human knowl-

Table 1: MAP and Return for (a) previous approach, (b) pro-
posed approach and (c) upper bound evaluated on both one-
best transcriptions and lattices.

Approaches one-best lattices
MAP Return MAP Return

(a-1) First-pass 0.4521 - 0.4577 -
(a-2) Random Actions 0.4553 -61.7 0.4117 -111.21
(a-3) Hand-crafted States 0.5398 67.07 0.5626 84.54
(b-1) Raw Feature 0.5619 89.27 0.5847 105.03
(b-2) Selected Feature+(b-1) 0.5691 95.72 0.5907 110.90
(c) Upper Bound (Oracle) 0.6554 164.94 0.6639 168.75

edge by estimating hand-crafted states in (a-3). This shows that
the end-to-end neural network can properly estimate useful ac-
tion selection indicators implicitly in its hidden layers directly
from raw retrieval scores. Finally, using both the raw relevance
scores and human knowledge features together in (b-2) achieved
the best results.

To further explore DQN’s ability on selecting actions, Fig-
ure 2 shows the learning curves of the final return for the pro-
posed approach with different neural network depth using dif-
ferent sets of features: raw relevance scores for the top 100
retrieved items (dotted curves) and plus the human knowledge
features (solid curves). Colors green, red, blue represents the
curves using linear model (neural network without hidden lay-
ers), 2 and 4 layers, respectively. We observe that the linear
model can be easily trained when the two sets of features are
jointly used. But when solely using raw relevance scores, it
diverged and didn’t work (dotted-green). This shows that the
mapping from raw relevance scores to proper actions is com-
plicated and cannot be modeled without any hidden layers. The
red and blue curves for 2 and 4 hidden layers showed that deeper
model usually yielded better performance in most cases, espe-
cially when using raw relevance scores exclusively. But with
a deeper model, it took more epochs to converge. This fig-
ure shows the results experimented on the lattice transcription,
whereas the results on one-best transcription were similar.

Since the results using raw relevance scores alone is compa-
rable to those using both sets of features jointly with DQN, we
conducted an extra experiment using raw relevance scores alone
but with different sizes on the one-best transcription. Over DQN
of 2 layers, Figure 3 shows the learning curves with the raw rele-
vance scores alone, where N is the number of the retrieved items
which relevance scores were used. We observe that DQN could
learn from only 1 relevance score, though it gave a relatively
poor performance, while all others (5,10,50,100) converged to
some good return.

4. Conclusion
Due to the high degree of uncertainty in speech and the diffi-
culty of showing on screen to users, user-system interaction is
highly desired for spoken content retrieval. In this paper, we
utilize Deep-Q-network(DQN) to learn better state-action val-
ues without estimating the hand-crafted states which were used
previously. This end-to-end learning is able offer overall opti-
mization for user-system interaction and produce significant im-
provements on return. We further found that even with raw rele-
vance scores alone without any human knowledge, we achieved
very good performance. We hope the results seen here can light
up the future directions of DQN in interactive spoken language
systems.
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