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Abstract
In recent years, deep neural networks have been shown to

be effective in many classification tasks, including mu-

sic genre classification. In this paper, we proposed two

ways to improve music genre classification with convolu-

tional neural networks: 1) combining max- and average-

pooling to provide more statistical information to higher

level neural networks; 2) using shortcut connections to

skip one or more layers, a method inspired by residual

learning method. The input of the CNN is simply the

short time Fourier transforms of the audio signal. The

output of the CNN is fed into another deep neural net-

work to do classification. By comparing two different

network topologies, our preliminary experimental results

on the GTZAN data set show that the above two methods

can effectively improve the classification accuracy, espe-

cially the second one.

Index Terms: music genre classification, convolutional

neural network, residual learning

1. Introduction
In the past few years, with the prevalence of personal

multimedia devices, a large amount of music is increas-

ingly available on various application platforms. Struc-

turing and organising such a large amount of music is

becoming impossible for humans. Genre classification is

currently one of the ways used to structure the music con-

tent. An effective and precise music genre classification

system is therefore urgently needed to enable automatic

structuring and organisation of large archives of music.

The genre of music is a kind of a high level label. As

a classification problem, the typical process of an auto-

matic genre classification system consists of three steps:

1) features such as timbre, spectro-temporal and statis-

tical features are extracted from original audio signal;

2) some techniques are applied to select the meaningful

subset of the features [1] or aggregate features [2, 3] to

improve the classification accuracy; 3) a classifier based

on machine learning methods is trained over the selected

*Both authors contributed equally to this paper.

features to automatically classify the input music into

different genres. As a crucial part of the system, find-

ing suitable representations or features is a key factor

to the success of the system. A common way to do is

to extract some hand-crafted features from the original

songs. This process requires expertise in specific field

and engineering ingenuity. Sarkar et al. used empirical

mode decomposition (EMD) to capture the local charac-

teristics of different genres and then computed the pitch

based features from the decomposed songs [4]. Baniya et

al. used timbral texture (MFCC and other spectral fea-

tures) and rhythmic content features based on wavelet

decomposition to improve the performance [5]. These

hand-crafted features have some disadvantages: firstly,

its difficult to design the features for a specific task; sec-

ondly, the method is lack of universality (i.e. different

features for different tasks need to be calculated sepa-

rately); thirdly, the model lacks extensibility since the

performance improvement of the system dose not rely on

an unified framework, for example, a different feature set

or classifier are usually required to achieve better classi-

fication accuracy on a different task.

With the development of deep learning, neural net-

works are very effective in different fields, including mu-

sic information retrieval (MIR) [6, 7, 8, 9]. In this pa-

per, we propose two ways to improve music genre clas-

sification accuracy with convolutional neural networks:

1) combining max- and average-pooling to provide more

statistical information to higher level neural networks; 2)

using shortcut connections to skip one or more layers, a

method inspired by the residual learning [10].

The rest of this paper is organised as follows. In Sec-

tion 2, the related work and latest advance of deep learn-

ing in MIR is introduced. We then describe the details of

our methodologies in Section 3, followed by the experi-

mental setup and results. Finally, we draw a conclusion

and describe potential future work in Section 5.

2. Related Work
Deep learning, especially convolutional networks

(CNNs) have recently been applied to computer vision
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and speech recognition successfully. There has been a lot

of interest in investigating unsupervised feature learning

by using deep neural networks in MIR. A Convolutional

Deep Belief Network (CDBN) was proposed to improved

music genre and artist classification performance by

using audio spectrogram and MFCC features in [11]. The

features learned from unlabelled audio data are shown

to perform very good on multiple music classification

tasks. Li et al. used CNNs to extract musical pattern

features in audio [7]. Their work proved that CNNs had

potential capacity to capture informative features from

the variations of musical patterns with minimal prior

knowledge needed. However, their experimental results

showed that the proposed models did not generalise very

well to unseen testing data [7]. Zhang et al. employed

CNNs with k-max pooling layers for semantic modelling

of music [8]. The proposed method could produce more

robust music representations by adding more layers.

Zhang et al. built a hierarchical architecture for extract-

ing invariant and discriminative audio representations

[12]. Sander et al. investigated the performance of the

features learned from raw audio signals by using CNNs.

They found that the networks were able to automatically

discover frequency decompositions. However, the CNN-

based method did not outperform spectrogram-based

approaches[13].

Motivated by the recent success of using CNNs in

other fields [10, 13, 7], we propose two ways to improve

music genre classification accuracy using convolutional

neural networks in this paper.

3. Methodology
Deep neural networks alleviate the need of task-depend

prior knowledge since the features are automatically tai-

lored to the task at hand. However, the net architecture

greatly affects the system performance. Thus we need to

carefully design the net. In this Section, we describe two

different network architectures (Figure 1 and Figure 2)

that will be investigated in our experiments.

As can be seen from Figure 1 and Figure 2, the input

of the nets is Short Time Fourier Transform (STFT) mag-

nitude spectrum, which is usually used to represent the

timbre texture of music [14]. Our nets consist of two ma-

jor parts: a stack CNN module used as the feature extrac-

tor to learn mid and high level features from the spectro-

grams, and a fully connected module (i.e. the dense lay-

ers) used as the classifier. CNNs are biologically-inspired

variants of multilayer perceptrons. We will describe the

architectures of the two nets in details below.

3.1. The network with both max and average pooling

Figure 1 shows the architecture of the first neural network

(referred to as nnet1 below) used in our experiments. It

contains 10 layers, including the input layer and the soft-

STFT spectrogram(128, 513)

Convolution(128,4,513)

Convolution(128,4,1)

Max-pooling(2,1)

Max-pooling(2,1)

Convolution(256,4,1)

Max-pooling(26,1) Average-pooling(26,1)

Dense 300

Dense 150

Dense 10

genre predictions

Figure 1: The architecture of the first neural network we
used (nnet1).

max output layer. The input layer is the STFT of the in-

put audio signal. As will be explained later, it contains

about 128 frames and each frame has 513 frequency bins.

The first convolutional layer has 128 different kernels of

equal size. During convolution, the kernel surveys a fixed

4 × 513 region in the input STFT spectrogram, multi-

plying the input value with its associate weights in the

kernel, adding the kernel bias and passing the result to

the activation function. After each convolution, the ker-

nel hops 1 step forward along the input. The 2nd and

3rd convolutional layers function very similarly to the 1st

convolutional layer, with 128 and 256 feature maps re-

spectively. Their kernel size is 4× 1 and their hop size is

1. Each kernel has connections with all the feature maps

in the lower layer.

CNNs exploit timely-local correlation by enforcing a

local connectivity pattern between the input and the CNN

neurons. The inputs of a unit in layer m are from a sub-

set of units in layer m− 1, units that are timely contigu-

ous to each other. In our case, each STFT frame spans

23 ms on the audio signal with 50% overlapping with

adjacent frames. Thus the first convolutional layer (i.e.

2nd layer) detects basic musical patterns appear in about

127 ms. Upper convolutional layers capture musical pat-

terns in longer windows, meaning that the neuron be-

comes more global. In addition, since the kernel is shared

across on a feature map, it allows useful features to be de-

tected regardless of their position in the spectrum. This

weight sharing mechanism also increases learning effi-
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ciency by greatly reducing the number of free parameters

to be learnt. The constraints on the model enable CNNs

to achieve better generalisation on lots of classification

tasks.

Following each convolutional layer, except the last

one, a max-pooling operation with a hop size 1 is applied

as a process of non-linear subsampling. The max-pooling

enables CNNs to look at non-overlapping regions of the

audio signal and output the maximum value. By elim-

inating non-maximal values, it reduces computation for

upper layers. Also, it provides a form of translation in-

variance. Purposely, both the max- and average-pooling

operations across the entire time axis are used after the

3rd convolutional layer in order to provide more statisti-

cal information to the following layers.

The last three layers are dense layers with 300, 150

and 10 hidden units respectively, which are used as a clas-

sifier to automatically classify the input audio into differ-

ent genres. The output of the last layer is the probabilities

of different genres.

Rectified linear units (ReLUs) [15, 16] are used as the

activation function in all convolutional and dense layers

except for the top layer where the softmax function is ap-

plied instead. The ReLU activation function is defined as

f(x) = max(0, x). Compared with the sigmoid func-

tion, ReLU does not saturate at 1 and the partial deriva-

tive of the activation function with respect to the model

parameters is never 0, as long as the neural is active. Dur-

ing training, regularisation techniques such as Dropout is

usually used to prevent the model from overfitting.

3.2. The Residual Network

Figure 2 shows the architecture of the second neural net-

work (referred to as nnet2 below) used in our experi-

ments. It’s similar to the nnet1. The biggest difference

between the two networks is the shortcut connections

from the output of the first convolutional layer to the out-

put of the third convolutional layer.

This network is inspired by the concept of residual

learning proposed by He et al. [10]. Suppose the compli-

cated function learnt by the stacked layers is H(x), then

it is equivalent to hypothesise that the net can asymptot-

ically approximate the residual functions, i.e., H(x) − x
(assuming that the input and output are of the same di-

mensions). So, instead of approximating H(x), we ex-

plicitly let these layers approximate a residual function

F (x) := H(x) − x. The original function thus becomes

F (x) + x. The authors claim that 1) residual learning

makes it easier to optimise a deeper net; and 2) the net-

work can gain accuracy from increased depth. We only

use a single residual block for the following two reasons:

1) to avoid overfitting since the training data used in our

experiments are limited; 2) to facilitate a fairer compar-

ison by making nnet1 and nnet2 have the same number

of layers. Similarly, we use global temporal max- and

genre predictions

STFT spectrogram(128, 513)

Convolution(256,4,513)

Convolution(256,4,1)

Convolution(256,4,1)

+

Max-pooling(125,1) Average-pooling(125,1)

Dense 10

Dense 150

Dense 300

Residual block

Figure 2: The network architecture of nnet2.

average-pooling after the residual block. The remaining

parts of the network, used as a classifier, have the same

settings as the first network.

We also use a technique called batch normalisation

(BN) [17] to speed up the training process and make the

final model more robust. The BN operation provides a

method of reducing internal covariate shift and thus al-

lows us to use a much larger learning rate. In particular,

BN can be expressed as

y(k) = γ(k)x̂(k) + β(k) (1)

x̂(k) is the normalised k-th dimension of the input, and

the parameters γ(k) and β(k) are learnt along with the

original model parameters. We refer the readers to [17]

for the details of the BN technique.

4. Experiments and Results
In this Section, we report the experiments used to evalu-

ate the methodologies described in Section 3.

4.1. Dataset

The dataset we used is GTZAN dataset, which was col-

lected by Tzanetakis and Cook [18]. The GTZAN dataset

has been widely used as a benchmark for music genre

classification [19]. There are 1000 song excerpts that

are almost evenly distributed into ten different genres:

Blues, Classical, Country, Disco, Hiphop, Jazz, Metal,

Pop, Reggae and Rock. Each song excerpt lasts about 30

seconds and is sampled at 22050Hz, 16 bits.
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In our experiments, all the songs are split into 8/1/1

train, validate and test splits. The number of songs for

different genres in the train, validate and test sets is bal-

anced. Evaluation on this dataset was carried out in a

10-fold cross validation manner. The classification accu-

racy was used as the measure of the performance and all

the results reported below were averaged over ten runs.

4.2. Experimental Setup

We firstly cut every song excerpt (about 30 seconds)

into smaller music clips (3 seconds) with 50% overlap.

We found that this improved the classification accuracy.

Then, as in [3], we calculate FFTs on frames of length

1024 with an overlap of 50% and use the absolute value

of each FFT frame. The output for each frame is a 513

dimensional vector.

When training the networks in all experiments, we

used Adadelta [20] as the optimiser with the default learn-

ing 1.0. The loss function we chose was categorical

cross-entropy. We also used the dropout technique with

0.2 dropout rate to alleviate the overfitting problem. In

nnet2, the output of the first convolutional layer has 256

feature maps and each map is a 125 dimensional vector,

while each map of the output of the third convolutional

layer is a 119 dimensional vector. Before the component

wise adding operation, we used zero padding to make

sure that the two vectors are of the same dimension. We

used mini batches of 50 samples and we shuffled the sam-

ples after each epoch.

The output of the networks are the probabilities of dif-

ferent genres for each music clip. We added up the prob-

abilities of the clips from the same song, and chose the

genre with the maximum value as the label of the song.

4.3. Results

The genre classification accuracies of the neural networks

described in Section 3 are reported in Table 1. For com-

parison, we also presented results achieved with neural

networks that used only max-pooling or average-pooling.

The neural network with only max-pooling is equivalent

to the one used in [8]. But in their network, the DNN af-

ter CNN contains only one hidden layer. In addition, they

only used the neural networks to extract features.

Table 1: Results for nnet1 and netted with different pool-
ing methods.

Methods Accuracy

nnet1(max-pooling) 79.9%

nnet1(average-pooling) 84.4%

nnet1 (max- and average-pooling) 84.8%
nnet2(max-pooling) 85.0%

nnet2(average-pooling) 81.9%

nnet2 (max- and average-pooling 87.4%

Table 2: Genre classification results on GTZAN.

Methods Features Accuracy

nnet1 STFT 84.8%
nnet2 STFT 87.4%

KCNN(k=5)+SVM [8]
mel-spectrum,

SFM, SCF
83.9%

DNN (ReLU+SGD

+Dropout) [3]

FFT

(aggregation)
83.0%

Multilayer invariant

representation [12]

STFT with log

representation
82.0%

As can be seen, if only a single pooling operation

is used, the first neural network works best with max-

pooling, while the second one works best with average-

pooling. That means we need to choose the right pool-

ing operation for the network to achieve the best per-

formance. However, combining both max- and average-

pooling always improve the classification accuracy, es-

pecially for the second neural network. In addition, the

residual learning method significantly improves the clas-

sification accuracy.

In table 2, we compare with previous results on the

GTZAN data set. The performance of nnet1 is slightly

better than KCNN. Note that nnet1 with only max-

pooling is almost the same with KCNN (K stands for k-

max, [8]). But in [8], the extracted features using KCNN

were fed into SVM for classification. The nnet2 result

outperforms all listed previous results.

5. Conclusions and Future Work
In this paper, we have investigated the effectiveness of

using CNNs for music genre classification. Our experi-

mental results show that the following two ways are ef-

fective to improve music genre classification with CNNs:

1) combining max- and average-pooling to provide more

statistical information to higher level neural networks; 2)

using shortcut connections to skip one or more layers, a

method inspired by residual learning.

In the future, we’ll try to fuse new methods such as

multi-scale convolution and pooling [21] with residual

learning (e.g. inception-resnet [22]). Since the spectro-

gram is still hand-crafted features, we’ll also study end-

to-end learning to extract salient musical representations

from the raw audio signals directly.
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