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1LIUM, University of Le Mans, France
2ITMO University, Saint-Petersburg, Russia

3STC-innovations Ltd, Saint-Petersburg, Russia
natalia.tomashenko@univ-lemans.fr, khokhlov@speechpro.com, yannick.esteve@univ-lemans.fr

Abstract
In this paper we investigate the Gaussian Mixture Model

(GMM) framework for adaptation of context-dependent deep
neural network HMM (CD-DNN-HMM) acoustic models. In
the previous work an initial attempt was introduced for efficient
transfer of adaptation algorithms from the GMM framework to
DNN models. In this work we present an extension, further
detailed exploration and analysis of the method with respect to
state-of-the-art speech recognition DNN setup and propose var-
ious novel ways for adaptation performance improvement, such
as, using bottleneck features for GMM-derived feature extrac-
tion, combination of GMM-derived with conventional features
at different levels of DNN architecture, moving from mono-
phones to triphones in the auxiliary GMM model in order to
extend the number of adapted classes, and finally, using lattice-
based information and confidence scores in maximum a pos-
teriori adaptation of the auxiliary GMM model. Experimental
results on the TED-LIUM corpus show that the proposed adap-
tation technique can be effectively integrated into DNN setup at
different levels and provide additional gain in recognition per-
formance.
Index Terms: speaker adaptation, deep neural networks
(DNN), MAP, fMLLR, CD-DNN-HMM, GMM-derived
(GMMD) features, speaker adaptive training (SAT), confidence
scores

1. Introduction
Nowadays, deep neural networks (DNNs) have replaced con-
ventional Gaussian mixture models (GMM) HMMs in most
state-of-the-art automatic speech recognition (ASR) systems,
because it has been shown [1] that DNN-HMM models out-
perform GMM-HMMs in different ASR tasks. However, vari-
ous adaptation algorithms that have been developed for GMM-
HMM systems [2, 3] cannot be easily applied to DNNs be-
cause of the different nature of these models. Various adaptation
methods have been developed for DNNs. Most of them can be
classified into several types: linear transformation, regulariza-
tion techniques, auxiliary features, multi-task learning, combin-
ing GMM and DNN models and other model-space adaptation
techniques.

Linear transformation can be applied at different levels of
the DNN-HMM system: to the input features, as in linear input
network transformation (LIN) [4, 5, 6] or feature-space discrim-
inative linear regression (fDLR) [7, 8]; to the activations of hid-
den layers, as in linear hidden network transformation (LHN)
[4, 5]; or to the softmax layer, as in LON [6] or in output-feature
discriminative linear regression [8]. The authors of [9] describe

a method based on linear transformation in the feature space
and principal components analysis (PCA).

The second type of adaptation consists in re-training the
entire network or only a part of it using special regulariza-
tion techniques for improving generalization, such as L2-prior
regularization [10], Kullback-Leibler divergence regularization
[11], conservative training [12]. In [13] only a subset of the hid-
den units is retrained. The number of speaker-specific param-
eters is reduced in [14] through factorization based on singular
value decomposition. Regularized adaptive training of subsets
of DNN parameters is explored in [15].

The concept of multi-task learning (MTL) has recently
been applied to the task of speaker adaptation in several works
[16, 17, 18, 19] and has been shown to improve the performance
of different model-based DNN adaptation techniques, such as
LHN [17] and learning speaker-specific hidden unit contribu-
tions (LHUC) [18].

Using auxiliary features is another approach in which the
acoustic feature vectors are augmented with additional speaker-
specific or channel-specific features computed for each speaker
or utterance at both training and test stages. An example of
effective auxiliary features is i-vectors [20, 21, 22, 23]. Al-
ternative methods are adaptation with speaker codes [24] and
factorized adaptation [25].

Among the adaptation methods developed for DNNs, a few
take advantage of robust adaptability of GMMs [7, 26, 27, 28,
29, 30]. The most common way of combining GMM and DNN
models for adaptation is using GMM-adapted features, for ex-
ample fMLLR, as input for DNN training [7, 26, 27]. Other
methods include temporally varying weight regression [29] and
GMM-derived features [31, 32].

There are also several model-space adaptation methods,
that do not fall into the above categories, such as LHUC [33],
where an amplitude parameter is introduced for each hidden
unit, tied on a per-speaker basis, and then estimated using
adaptation data; the adaptation parameters estimation via maxi-
mum a posteriori (MAP) linear regression [34]; and hierarchical
MAP approach [35]. In [36] the shape of the activation function
is changed to better fit the speaker-specific characteristics.

In this paper we investigate the GMM framework for adap-
tation of DNN-HMM acoustic models. Our approach is based
on using features derived from a GMM model for training DNN
models [31, 32, 37] and GMM-based adaptation techniques. In
the previous works it was shown that GMM log-likelihoods can
be effectively used as features for training a DNN HMM model,
as well as for the speaker adaptation task. Experiments were re-
ported on the small (15 hours) WSJ corpora with medium-size
vocabularies (5K and 20K words).
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The purpose of this work is a detailed exploration and anal-
ysis of the method with respect to a state-of-the-art speech
recognition DNN setup on a large vocabulary speech recogni-
tion task on a large corpus, to highlight the strengths and weak-
nesses of the proposed approach. We propose various novel
ways for adaptation performance improvement. Firstly, we im-
prove GMM-derived (GMMD) feature extraction by using BN
features for training of the auxiliary GMM model, which is used
for GMMD feature extraction. Secondly, we experiment with
combination of GMMD features and conventional features at
different levels of DNN architecture in order to discover the best
possible configuration. Finally, we explore a novel approach for
the combination of MAP and fMLLR techniques for SAT with
GMMD features. In addition, we apply lattice-based informa-
tion and confidence scores in MAP adaptation of the auxiliary
GMM model to improve the adaptation performance.

The rest of the paper is organized as follows. In Section 2,
SAT for DNN-HMM based on GMMD features is introduced.
Section 3 describes MAP adaptation algorithm using lattices
scores. The experimental results are given in Section 4. Finally,
conclusions are presented in Section 5.

2. GMM framework for adaptation of DNN
acoustic models

Construction of GMM-derived features for adapting DNNs was
proposed in [31, 32], where it was demonstrated, using MAP
and fMLLR adaptation as an example, that this type of features
makes it possible to effectively use GMM-HMM adaptation al-
gorithms in the DNN framework. In this work we improve the
previously proposed scheme for GMM-derived feature extrac-
tion and apply the concept of GMMD features with adaptation
to state-of-the art DNN architecture.

One of the main differences in GMMD feature extraction
procedure in comparison with the previous works consists in
changing the type of basic acoustic features for the auxiliary
GMM model. In the past an auxiliary GMM model was trained
on MFCC features, and then this GMM model was used to ex-
tract GMMD features for further training DNN model. In this
work we investigate the effectiveness of the proposed approach
on another level of DNN architecture. We use BN features from
DNN to train GMM model for GMMD feature extraction. The
motivation for using BN features in this approach is that for the
better source features we can obtain better adaptation results.
BN features allow us to capture long term spectro-temporal dy-
namics of the signal with GMDD features and are proven to be
effective both for GMM and DNN acoustic model training [38].

The scheme for training DNN model with GMM adapta-
tion framework is shown in Figure 1. First, 40-dimensional log-
scale filterbank features concatenated with 3-dimensional pitch-
features, are spliced across 11 neighbouring frames (5 frames
on each side of the current frame), resulting in 473-dimensional
(43×11) feature vectors. After that a DCT transform is applied
and the dimension is reduced to 258. Then a DNN model for
40-dimensional BN features is trained on these features.

An auxiliary triphone or monophone GMM model is used
to transform BN feature vectors into log-likelihoods vectors. At
this step, speaker adaptation of the auxiliary SI GMM-HMM
model is performed for each speaker in the training corpus and
a new speaker-adapted (SA) GMM-HMM model is created in
order to obtain SA GMM-derived features. For a given BN fea-
ture vector, a new GMM-derived feature vector is obtained by
calculating log-likelihoods across all the states of the auxiliary

��

��

GMM-derived feature extraction

Fbank features

Input sound

Auxiliary GMM 
trained on BN features

SAT-DNN training

p
Cepstral mean normalization

Pitch features

DCT

DNN training for BN features

Splicing: ×13   [-10,-5…5,10]

Splicing: ×11   [-5…5]

Transcriptions

speaker adapted

speaker independent

�� �� ��

Speaker adaptation

Figure 1: Using speaker adapted GMM-derived features for
SAT DNN-HMM training.

GMM model on the given vector. Suppose ot is the BN feature
vector at time t, then the new GMM-derived feature vector ft is
calculated as follows:

ft = [p1t , . . . , p
n
t ], (1)

where n is the number of states in the auxiliary GMM-HMM
model,

pit = log (P (ot | st = i)) (2)

is the log-likelihood estimated using the GMM-HMM. Here st
denotes the state index at time t. Then the features are spliced in
time taking a context size of 13 frames: [-10,-5...5,10]. We will
refer to these resulting features as GMMD features. These fea-
tures are used as the input for training the DNN. The proposed
approach can be considered a feature space transformation tech-
nique with respect to DNN-HMMs trained on GMMD features.

3. MAP adaptation using lattices scores
The use of lattice-based information and confidence scores
[39, 40] is a well-known method for improving the performance
of unsupervised adaptation. In this work we use the MAP adap-
tation algorithm for adapting the SI GMM-HMM model [3].
Speaker adaptation of a DNN-HMM model built on GMMD
features is performed through the MAP adaptation of the auxil-
iary GMM-HMM model, which is used for calculating GMMD
features.

We modify the traditional MAP adaptation algorithm by us-
ing lattices instead of alignment to the 1-best hypothesis of the
first decoding pass as follows. Let m denote an index of a Gaus-
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sian in the SI acoustic model (AM), and μm the mean of this
Gaussian. Then the MAP estimation of the mean vector is

μ̂m =
τμm +

∑
t γm(t)ps(t)ot

τ +
∑

t γm(t)ps(t)
, (3)

where τ is the parameter that controls the balance between the
maximum likelihood estimate of the mean and its prior value;
γm(t) is the posterior probability of Gaussian component m at
time t; and ps(t) is the confidence score of state s at time t in
the lattice obtained from the first decoding pass by calculating
arc posteriors probabilities. The forward-backward algorithm
is used to calculate these arc posterior probabilities from the
lattice as follows:

P (l|O) =

∑
q∈Ql

pacc(O|q) 1
αPlm(w)

P (O)
, (4)

where α is the language model scale factor (the optimal value
for α is found empirically); q is a path through the lattice corre-
sponding to the word sequence w; Ql is the set of paths passing
through arc l; pacc(O|q) is the acoustic likelihood; Plm(w) is
the language model probability; and p(O) is the overall likeli-
hood of all paths through the lattice.

In a particular case, when ps(t) = 1 for all states and t, for-
mula (3) represents the traditional MAP adaptation. In addition
to this frame-level weighting scheme, we apply a confidence
base selection scheme, when we use in (3) only those obser-
vations, for which confidence scores exceed a given threshold.
For adaptation of a DNN AM, first, MAP adaptation of an auxil-
iary GMM model is performed and a new speaker-adapted (SA)
GMM model is obtained, as described above. Second, at the
recognition stage, SA GMMD features for DNN are calculated
using this SA GMM.

4. Experimental results
4.1. Data sets

The experiments were conducted on the TED-LIUM corpus
[41]. We used the last (second) release of this corpus [41]. This
publicly available data set contains 1495 TED talks that amount
to 207 hours (141 hours of male, 66 hours of female) speech
data from 1242 speakers, 16kHz. For experiments with SAT
and adaptation we removed from the original corpus data for
those speakers, who had less than 5 minutes of data, and from
the rest of the corpus we made four data sets: training set, de-
velopment set and two test sets. Characteristics of the obtained
data sets are given in Table 1. The motivation for creating the
new test and development data sets was to obtain data sets, that
are more representative and balanced in characteristics (gender,
duration) than the original ones and more suitable for adaptation
experiments.

For evaluation we use 150K word vocabulary and pub-
licly available trigram language model cantab-TEDLIUM-
pruned.lm31.

4.2. Baseline system

We used the open-source Kaldi toolkit [42] and followed mostly
TED-LIUM Kaldi recipe to train the baseline system.

For training DNN models, first the initial GMM model was
trained using 39-dimensional MFCC features with delta and
acceleration coefficients. Linear discriminant analysis (LDA)

1http://cantabresearch.com/cantab-TEDLIUM.tar.bz2

Table 1: Data sets statistics

Characteristic
Data set

Training Development Test1 Test2

Duration, hours
Total 171.66 3.49 3.49 4.90
Male 120.50 1.76 1.76 3.51

Female 51.15 1.73 1.73 1.39

Duration per speaker, minutes
Mean 10.0 15.0 15.0 21.0

Minimum 5.0 14.4 14.4 18.3
Maximum 18.3 15.4 15.4 24.9

Number of speakers
Total 1029 14 14 14
Male 710 7 7 10

Female 319 7 7 4

Number of words - 36672 35555 51452

followed by maximum likelihood linear transform (MLLT) and
fMLLR transformation was then applied over these MFCC fea-
tures to build a GMM-HMM system. Discriminative training
with the boosted maximum mutual information (BMMI) objec-
tive was finally performed on top of this model.

4.2.1. SAT DNN on fMLLR features

Then a DNN was trained for BN feature extraction. The DNN
system was trained using the frame-level cross entropy criterion
and the senone alignment generated from the GMM system. For
training this DNN, 40-dimensional log-scale filterbank features
concatenated with 3-dimensional pitch-features, were spliced
across 11 neighbouring frames, resulting in 473-dimensional
(43 × 11) feature vectors. After that a DCT transform was ap-
plied and the dimension was reduced to 258. A DNN model
for extraction 40-dimensional BN features was trained with the
following topology: a 258-dimensional input layer; four hid-
den layers (HL), where the third HL was a BN layer with 40
neurons and other three HLs were 1500-dimensional; the out-
put layer was 2390-dimensional. On the obtained BN features
we trained the GMM model, which is used to produce forced
alignment, and then SAT-GMM model was trained on fMLLR-
adapted BN features. Then for training the final DNN model,
fMLLR-adapted BN features were spliced in time with the con-
text of 13 frames: [-10,-5...5,10]. The final DNN had a 520-
dimensional input layer; six 2048-dimensional HLs with logis-
tic sigmoid activation function, and a 4184-dimensional soft-
max output layer, with units corresponding to the CD states.
The DNN parameters were initialized with stacked restricted
Boltzmann machines (RBMs) by using layer by layer genera-
tive pre-training. The DNN was trained with an initial learning
rate of 0.008 using the cross-entropy objective function.

4.2.2. Baseline SI-DNN

This model was trained in a similar way as the SAT DNN de-
scribed above, but without fMLLR adaptation.

4.3. Impact of the auxiliary GMM and parameter τ on
GMMD features

An auxiliary GMM is used for GMMD feature extraction. In
order to speed up these preliminary experiments, we performed
them on a smaller (85 hours) subset of the training dataset.
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We aim to explore two factors related to this GMM: (1) the
topoplogy of the model and (2) the type of input features for
training this model, and choose the configuration, which is more
effective for GMMD feature extraction. We experimented with
the following parameters of GMM model: the total number of
Gaussians and their distributions between states. Also GMM
models were trained on two different types of input features:
39-dimensional MFCC and BN features, extracted as described
in Section 4.2.1. In addition we extracted features with different
values of adaptation parameter τ (in formula (3)). The perfor-
mance results in terms of Word Error Rate (WER) for DNN
models, used for BN feature extraction, are presented in Ta-
ble 2. Parameter Power in the table is the exponent for number
of Gaussians according to occurrence counts. We can see that
for GMMD feature extraction it is better to train an auxiliary
GMM model on BN features than on MFCC, and that equal dis-
tribution of number of Gaussians between states (Power = 0)
performs worse than distribution which is dependent on occur-
rence counts. We set parameter τ = 5 for all the following
experiments.

Table 2: Impact of the parameters of the auxiliary model topol-
ogy and τ on GMMD feature extraction (on the development
set)

Features Gaussians τ Power WER,%

MFCC

2500 5 0.5 13.89
2500 5 0.0 14.05
3800 5 0.5 13.75
3800 5 0.0 13.65

BN

2500 1 0.5 13.69
2500 3 0.5 13.51
2500 5 0.5 13.34
2500 7 0.5 13.33
2500 10 0.5 13.40
2500 5 0.0 13.34
3800 5 0.5 13.33
3800 5 0.0 13.48

10200 5 0.5 13.92

4.4. Adaptation results

The adaptation experiments were conducted in an unsupervised
mode on the test data using transcripts obtained from the first
decoding pass. For this set of experiments all the training cor-
pus is used. We empirically studied the approach described in
Section 2 and applied it at different levels to the conventional
recipe. The performance results in terms of WER for SI and
SAT DNN-HMM models are presented in Table 3. The first two
lines of the table correspond to the baseline SI and SAT DNNs,
which were trained as described in Section 4.2. For the adapta-
tion experiments we first (line 3) trained a SAT-DNN using only
MAP adaptation, as shown in Figure 2 (adapted features AF1),
where the adapted GMMD features were concatenated with
the conventional unadapted BN features. Second (line 4), we
trained a SAT-DNN using MAP and fMLLR adapted features,
as shown in Figure 3 (AF2). For this model we used a triphone
auxiliary GMM model instead of a monophone GMM, but kept
for GMMD feature extraction only the most frequent states, as
we noticed that this type of auxiliary GMM model gave slightly
better results. Finally, we performed state-level system combi-
nation experiments for two SAT-DNNs adapted with MAP and
with fMLLR (line 7). For this purpose we trained a DNN on fea-

BN

with MAP[-5…5]

splicing DCTCMVN
40

3

fbanks

pitch

43 473 258 40

GMMD
[-10,-5…5,10]

splicing
2041

117

Figure 2: Adapted features AF1

BN
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splicing DCTCMVN

[-10,-5…5,10]

splicing
40

3

fbanks

pitch

43 473 258 40

119

1040

BN-MAP
40

BN-fMLLR
40

MFCC
39

GMMD

Figure 3: Adapted features AF2

tures AF1, but using the same units in the softmax output layer
as in model 2. In this work combination results are shown for
the mean of outputs of two DNNs. In addition we performed
an adaptation experiment with using lattices scores instead of
alignment (line 5), as described in Section 3. We can see that
MAP adaptation on GMMD features can be complementary to
fMLLR adaptation on conventional BN features.

Table 3: Summary of the adaptation results for DNN models.

Model Features
WER,%

Dev Test1 Test2
1 SI BN 13.16 11.94 15.43
2 SAT fMLLR-BN 11.72 10.88 14.21

3 SAT AF1 11.56 10.51 13.94
4 SAT AF2 11.44 10.81 14.14
5 SAT AF1 +lattice 11.43 10.45 13.80

6 as 3, state tying from 2 11.40 10.65 14.03

7 posterior fusion: 2 and 6 11.01 10.25 13.52

5. Conclusions
In this paper we have investigated GMM framework for adap-
tation of DNN-HMM acoustic models and proposed various
novel ways for adaptation performance improvement, such as,
using bottleneck features for GMM-derived feature extraction,
combination of GMM-derived with conventional features at dif-
ferent levels of DNN architecture, and finally, using lattice-
based information and confidence scores in MAP adaptation
of the auxiliary GMM model for DNN acoustic model adap-
tation. Experimental results on the TED-LIUM corpus demon-
strate that, in an unsupervised adaptation mode, the proposed
adaptation technique can provide approximately, a 14–16% rel-
ative WER reduction on different adaptation sets, compared to
the SI DNN system built on conventional features, and a 3–6%
relative WER reduction compared to the SAT-DNN trained on
fMLLR adapted features. Experiments with different types of
fusion show that MAP adaptation on GMMD features can be
complementary to fMLLR adaptation on conventional BN fea-
tures, and the most efficient type of fusion is the combination of
DNN models on the state level.
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