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Abstract

Narrative, spontaneous speech can provide a valuable source
of information about an individual’s cognitive state. Unfortu-
nately, clinical transcription of this type of data is typically done
by hand, which is prohibitively time-consuming. In order to au-
tomate the entire process, we optimize automatic speech recog-
nition (ASR) for participants with Alzheimer’s disease (AD) in
a relatively large clinical database. We extract text features from
the resulting transcripts and use these features to identify AD
with an SVM classifier. While the accuracy of automatic as-
sessment decreases with increased WER, this is weakly corre-
lated (−0.31). This relative robustness to ASR error is aided by
selecting features that are resilient to ASR error.
Index Terms: speech recognition; older voices; Alzheimer’s
disease; assessment

1. Introduction
Diagnosing and screening for Alzheimer’s disease (AD) is an
expensive and laborious process. Current approaches to the
detection of AD and other dementias are unsustainable, given
that the incidence of dementia is expected to rise significantly
as the global population ages [1]. To ease this burden, mod-
ern approaches are being proposed to automate relevant aspects
of assessment. Since AD can diminish vocabulary, syntactic
complexity, and speech fluency, even in the earliest stages, var-
ious systems have been proposed to automatically detect signs
of cognitive impairment from speech [2, 3, 4, 5, 6, 7, 8].

Currently, to extract clinically useful lexicosyntactic mea-
sures, spontaneous speech must be transcribed by profession-
als, which is impossible on a very large scale. Unfortunately, no
available automatic speech recognition (ASR) system exists for
people with AD or cognitive disorders. Moreover, even an opti-
mized system would undoubtedly produce errorful transcripts,
which may deteriorate automated assessment performance. For
example, estimating the number of nouns in a narrative sample
depends on those nouns being correctly recognized.

In this work, we first produce alternative ASR systems to
optimize performance in older adults with and without demen-
tia. We then use the resulting transcripts in our existing auto-
matic assessment [8] to classify speakers by diagnostic group
(healthy vs. AD), and discuss the features which are both rele-
vant to binary classification and robust to the noisy recognition.

2. Previous work
In this study, we use speech recognition as the input to a sys-
tem that can analyze a spoken narrative and predict whether the
speaker is cognitively healthy or has AD. Other studies in this
area have used manually transcribed transcripts [2, 4, 7, 8]. One

strategy which combines ASR technology with manual tran-
scripts is to use forced-alignment to measure features such as
rate of speech [3, 9]. However, for a speech analysis system to
be available online or as part of an in-home continuous monitor-
ing system, there must be no reliance on manual transcriptions
at the word-level, which forced-alignment requires.

In general, the accuracy of ASR systems on elderly voices
tends to decrease with the age of the speaker [10]. Elderly
voices typically have increased breathiness, jitter, shimmer, and
a decreased rate of speech [10]. Older speakers may also ex-
hibit articulation difficulties, changes in fundamental frequency,
and decreased voice intensity [11]. These factors can result in
speech that is less intelligible to both human listeners and ASR
systems. For example, Hakkani-Tur et al. [12] found that in au-
tomatic scoring of a speech-based cognitive test, their ASR sys-
tem had a higher WER for healthy speakers over the age of 70
than for those under the age of 70, with WERs between 26.3%
and 34.1% for the elderly speakers, depending on the task and
the gender of the speaker, while the error rates ranged between
21.1% and 28.2% for the younger speakers.

Effective speech recognition can be further challenged by
the presence of linguistic impairments such as those occurring
in dementia; however, there have been relatively few results re-
ported in this area. Peintner et al. [13] analyzed speech from
patients with frontotemporal lobar degeneration, two variants of
which affect language: progressive nonfluent aphasia (PNFA)
and semantic dementia (SD). They achieved a WER of 61%
for speakers with PNFA and 37% for those with SD. They also
tested a control group, who had an average WER of 20%.

In previous work, we used commercial ASR to generate
transcripts of narrative speech from patients with primary pro-
gressive aphasia, which is a neurodegenerative language impair-
ment [14]. We used Nuance Dragon NaturallySpeaking 12.5
Premium with the ‘older voices’ model, and tested it both with
the default vocabulary and with a reduced vocabulary of words
relevant to our task. Counter-intuitively, Dragon gave higher
WER with the reduced vocabulary (97.5%) than with the de-
fault vocabulary (67.5%). Because that system is proprietary,
we were unable to investigate the changes to the underlying
models that led to this result. To overcome this issue, we now
use the open-source Kaldi ASR toolkit and a relatively large
corpus of speech in AD.

3. Data
Our data are derived from the DementiaBank (DB) corpus1

[15]. These data were collected between 1983 and 1988 at the
University of Pittsburgh. Information about the study cohort is

1Downloaded from https://talkbank.org/
DementiaBank/ on November 22, 2013
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available from Becker et al. [16]. From the ‘AD’ group, we
include participants with a diagnosis of ‘possible’ or ‘proba-
ble’ AD, resulting in 240 samples from 167 participants over
298.34 minutes. We also include ‘CTRL’ (control) partici-
pants, resulting in 233 additional files from 97 speakers over
220.09 minutes. Narrative speech was elicited using the stan-
dard ‘Cookie Theft’ picture description task from the Boston
Diagnostic Aphasia Examination [17]. Each speech sample was
recorded and manually transcribed at the word level following
the CHAT protocol [18]. The AD participants produced an av-
erage of 104.3 (σ = 59.0) words per narrative, while the control
participants produced an average of 114.4 (σ = 59.5) words per
narrative. We convert the audio associated with each transcript
from MP3 to 16-bit, 16 kHz mono WAV.

To train a baseline system, we also use the Wall Street Jour-
nal (phase 2) corpus (WSJ) [19], which consists of 78,000 train-
ing utterances (∼73 hours of speech), 4,000 of which are the
result of spontaneous dictation by journalists.

4. Experiments
Two experiments are conducted. In the first, we optimize ASR
for individuals with AD performing the Cookie Theft task. In
the second, we perform binary classification of AD using both
manual transcripts, as in our previous work, and transcripts de-
rived from the optimized ASR.

4.1. Experiment I: ASR for Alzheimer’s disease

Four experimental systems are produced with Kaldi, using var-
ious subgroups of the WSJ and DB data. The mono model
uses monophones, tri1 is a triphone model with δ and δδ fea-
tures, tri2 adds linear discriminant analysis and maximum like-
lihood linear regression (MLLR) transforms, and tri3 also adds
speaker-adaptive training using full feature space MLLR [20].

All experiments use 10-fold cross-validation. In all cases,
speakers are partitioned across folds so that individuals never
appear in both the training and test sets, and so that each fold
is balanced by the diagnosis of the speaker where relevant. In
all cases, lexicons and finite-state transducer grammars are ob-
tained on training sets. Insertion penalties (i.e., the cost of in-
serting a new word into the transcript) are empirically swept
from 0.0 to 1.0. The language model (LM) weights, which
regulate the importance of the language model relative to the
acoustic model, vary along the default range from 9 to 20.

We first verify our methodology by training and testing on
WSJ data, using the cross-validation strategy outlined above.
Our best WER is 3.72%, using the tri3 model, which is compa-
rable to state-of-the-art for WSJ [21], indicating that our models
work well on traditional speech data.

4.1.1. Train on WSJ, test on DB

We test how well the models trained on the WSJ data generalize
to older voices and the Cookie Theft task. Here, the models
are trained on WSJ data but tested on DB data. We again use
the 10-fold cross validation strategy, to allow for appropriate
comparisons across experiments. We test with both CTRL and
AD data separately, to observe any differences in WER between
groups, as shown in Table 1. In both cases, the best WER is
achieved with the tri3 model and an insertion penalty of 1.0, but
even the best WER is extremely high: 91.74% among CTRLs
and 93.54% among those with AD.

Tr. Te. Model Pen 0.0 Pen 0.5 Pen 1.0

W
SJ D

B
C

T
R

L mono 97.65 (0.34) 97.33 (0.23) 97.20 (0.16)
tri1 94.94 (0.65) 94.49 (0.47) 94.23 (0.33)
tri2 93.88 (0.56) 93.61 (0.43) 93.46 (0.29)
tri3 92.15 (0.49) 91.88 (0.41) 91.74 (0.32)

D
B

A
D

mono 98.47 (0.52) 98.08 (0.37) 97.89 (0.26)
tri1 96.37 (0.93) 95.84 (0.70) 95.53 (0.52)
tri2 95.51 (0.78) 95.14 (0.62) 94.93 (0.49)
tri3 94.07 (0.60) 93.75 (0.59) 93.54 (0.39)

D
B

C
T

R
L

D
B

C
T

R
L mono 42.81 (0.73) 45.07 (0.66) 47.66 (0.87)

tri1 39.14 (1.64) 40.57 (1.06) 42.12 (0.71)
tri2 42.84 (1.45) 44.24 (0.93) 45.61 (0.65)
tri3 36.28 (1.63) 37.06 (1.23) 37.92 (0.93)

D
B

A
D

D
B

A
D

mono 54.92 (0.99) 57.66 (0.81) 60.15 (0.73)
tri1 49.30 (1.99) 50.51 (1.32) 51.90 (0.85)
tri2 51.99 (2.25) 53.24 (1.55) 54.67 (1.10)
tri3 44.97 (2.26) 45.59 (1.91) 46.33 (1.47)

D
B

B
O

T
H

D
B

B
O

T
H mono 51.08 (0.92) 53.41 (1.10) 55.71 (1.08)

tri1 41.46 (1.81) 42.43 (1.23) 43.51 (0.82)
tri2 43.38 (2.08) 44.35 (1.59) 45.38 (1.18)
tri3 38.24 (1.80) 38.69 (1.55) 39.26 (1.24)

Table 1: WER for 4 models and 3 insertion penalties, averaged
over 10 folds and 13 LM weights. Results in bold are optimal,
within each configuration of training (tr.) and testing (te.) data.

4.1.2. Train on DB, test on DB

We now train models on DB data alone. While we do not
expect these models to generalize beyond the Cookie Theft
task, we do expect that constraining the vocabulary to the spe-
cific task, and the acoustic models to the specific recording
conditions, will improve accuracy. This is confirmed by the
greatly improved WER (Table 1). The lowest WERs are again
achieved using the tri3 models, but with an insertion penalty
of 0. The best WER for controls (36.28%) is significantly lower
(t(22) = 10.79, p < 0.001) than for people with AD (44.97%),
in keeping with previous work [22].

Although we separated CTRL and AD data to observe the
difference in WER between groups, in real-life screening or di-
agnosis, such as those described in Section 1, which ASR model
to use will not be known a priori. Therefore, we also train a
model which combines data from both the CTRL and AD data,
and test on a combination of these data. In this case, we obtain a
best average WER of 38.24%. This result is closer to the CTRL
result than the AD result when trained separately, possibly a
benefit of increased training set size.

Ultimately, our results suggest that for this particular task
and population, training on a relatively small amount of in-
domain data achieves better results than training on a large
amount of out-of-domain data.

4.2. Experiment II: Diagnosis with noisy transcripts

With the ASR transcripts from the previous section, we can now
classify according to diagnosis. We use transcripts generated
by models trained on a combination of AD and control data, to
mimic expected real-life scenarios. We use the same 10-fold
cross-validation framework for assessing binary classification
accuracy, using the same folds as in the ASR experiments. This
ensures that no information from any test set is present in the
training data. Each datum represents one session.

4.2.1. Diagnostic accuracy

To test the effect of WER on classification, we consider each
combination of LM weight and insertion penalty separately, and
we report the results for each fold. We use language-based fea-
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Figure 1: Classification accuracy by WER. Individual points
are colored according to the folds to which they belong. Round
points are generated from the final experiment in Section 4.1.
Square points are generated from gold transcripts and a subset
of the other experiments in Section 4.1, and included to show
how accuracy changes over the extremes of the WER range.

tures, described in [8], derived from the transcripts as input to
an SVM classifier with a second-degree polynomial kernel [23].
We do not consider acoustic and prosodic features, as we have
in the past, in order to focus on text-based features that can be
affected by ASR errors. We select the N most relevant features
(N ranging from 5 to 120) using a filter method based on the
correlation between feature and class in the training set [8].

Binary classification results are plotted against WER in Fig-
ure 1. Clearly, there is a large range of classification accu-
racies associated with a fairly narrow range of WER. By col-
oring the points associated with each fold separately, we can
see that some of this variance is due to the variability be-
tween folds. An n-way ANOVA shows no effect of insertion
penalty (F2,4679 = 1.00, p = 0.50), acoustic scale (F11,4679 =
1.56, p = 0.10), WER (F1,4679 = 3.31, p = 0.07), or N
(F1,4679 = 2.23, p = 0.14) on classification accuracy.

However, WERs generated by ASR trained on DB
(29%<WER<49%) do not cover the full range of possible
WERs. For this reason, Figure 1 also includes accuracies
achieved using the gold transcripts (WER=0%), transcripts us-
ing the mono model from the experiments outlined in Sec-
tion 4.1.2 (44%<WER<64%), and transcripts using the mod-
els trained on WSJ (WER≈90%). The gap occurring between
roughly 64% to 90% is due to the fact that none of the experi-
ments produced WERs in that range.

Using these additional data, lines-of-best-fit are applied to
each fold, with an average R2 = 0.17, and an overall Pear-
son correlation between WER and accuracy of r = −0.31,
indicating a weak negative correlation between WER and di-
agnostic accuracy. When we include data from the additional
models and the gold transcripts in an ANOVA, there are signif-
icant effects of WER (F1,5199 = 738.52, p < 0.001) and N
(F1,5199 = 5.86, p < 0.05).

4.2.2. Selected features

It is important to know which language features are still relevant
to diagnosis, given errorful ASR transcripts. Since it gives near-
optimum accuracy, we restrict our analysis to the N = 10 case,
and consider only the data trained and tested on DB using the

tri3 model, as well as the gold-standard data. Since different
features can be selected in each fold, we report the proportion
of folds in which each feature is selected. We subdivide the
training folds by WER, to determine if the selected features vary
with WER, as shown in Figure 2.

Three features are selected across all folds and WERs, in-
cluding gold transcripts: frequency (i.e., the frequency with
which a word occurs in the ‘SUBTL’ speech corpus [24]), word
length in characters, and the frequency of the construction VP
→ VBG PP (verb phrases as gerund verb and prepositional
phrase). The number of verbs and the informational feature con-
cept: window are also selected more than 50% of the time across
WERs. These features appear to be robust to ASR error. Other
features are selected very frequently in the gold transcripts but
rarely in ASR transcripts, including NP→ PRP (noun phrases
as prepositional phrases), not-in-dictionary’ (NID, aka out-of-
vocabulary) words, and pronoun ratio (i.e., the ratio of pronouns
to pronouns + nouns). Other features are selected only in the
ASR transcripts, e.g., keyword: window and concept: girl. That
these features distinguish CTRL from AD only in those tran-
scripts suggests an asymmetry in how related words are recog-
nized in the two groups.

Interestingly, the concept: window feature (which includes
mentions of words relating to windows, such as “frame” or
“glass”) is selected across the range of WERs, but the key-
word: window feature (which includes only mentions of the
word “window”) is only selected in ASR transcripts. In fact,
both of these features are significantly different between the
groups in the gold transcripts, but the difference is greater for
the concept, and the keyword is not generally selected until we
allow N = 20. In the ASR transcripts, there are fewer signifi-
cant differences, and so keyword: window is selected earlier.

4.2.3. Significance of features

To compare how features calculated from gold transcripts dif-
fer when calculated from ASR transcripts (trained on DB, LM
weight=9, insertion penalty=1.0), we construct bubble plots
comparing the p-values obtained, in each condition, from two-
tailed, heteroscedastic t-tests on each feature between the AD
and CTRL populations. Low p-values in each dimension of
these plots indicate features that differentiate CTRL from AD in
gold and ASR transcripts, respectively. Each bubble represents
a feature, and its size and color indicate the correlation between
feature values in the gold and ASR transcripts. Small bubbles
indicate that the values are relatively uncorrelated, while large
bubbles indicate that the values are highly correlated. Because
values of p span a wide scale, we show bubble plots with both
linear (Figure 3a) and log-scaled axes (Figure 3b). Due to the
large number of features, only select features are labelled.An
interactive version of these plots is online at http://www.
cs.toronto.edu/˜kfraser/testplot.html.

In Figure 3a, most visible bubbles are not significant at
α = 0.05; however, the position of the bubbles is useful.
Specifically, bubbles in the upper-right quadrants are features
which have no diagnostic utility in either the gold or ASR tran-
scripts. Bubbles in the lower-right correspond to features that
are more useful (lower p) in the ASR transcripts than the gold
transcripts. Bubbles in the upper-left are more useful in the gold
transcripts than the ASR transcripts, and bubbles in the lower-
left (as p→ 0 on each axis) are features that are always useful.

This pattern of interpretation extends to Figure 3b, where
we can more easily see features whose differentiating power
is always significant, e.g., word length and frequency, as sug-

1950



Figure 2: Percentage of folds (N = 10) in which each indicated feature was selected, across the given range of word error rates.

gested by Figure 2. Other features in Figure 2 also appear here.
In general, bubbles are arranged linearly, with some exceptions
such as NID, which is more significant given gold transcripts.

5. Discussion and future work
Our ASR results improve on previous work, and provide use-
ful information for diagnosis. However, we are limited by the
somewhat poor quality of the audio in DementiaBank. Some
files are dominated by noise, and are difficult to decipher even
by a human listener. Preliminary attempts to reduce noise using
least squares amplitude estimation did not significantly improve
the WER, and this remains the subject of ongoing work.

This paper is the first to detail the impact of ASR WER
on the usefulness of text-based features in clinical diagnosis.
While the broad trends in our results are expected (diagnos-
tic accuracy decreases as WER increases), we observe a wide
variance in accuracy associated with narrow bands of WER.
Considering only the transcripts derived from our most suc-
cessful ASR experiments, there is no significant effect on ac-
curacy of any of the independent variables we examined. This
underscores the fact that two ASR transcripts can have the same
WER without containing the same diagnostically relevant infor-
mation. Future work will seek to determine common properties
of the transcripts which are associated with higher diagnostic
accuracies, potentially including demographic information.

We have identified several features which appear to be ro-
bust to ASR error, but further work is required to better un-
derstand why these features remain significantly different in the
ASR transcripts (and conversely, why some features are frag-
ile to the recognition process). Further work will also explore
the features which are significant only in the ASR transcripts.
While these features cannot inform our knowledge of patholog-
ical speech patterns in dementia, if the differences are system-
atic, then they could still have utility in a diagnostic framework.
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(a) Features which are not significant (p close to 1), linear scale.

(b) Features which are significant (p� 1), log scale.

Figure 3: Diagnostic significance of each feature in gold
vs. ASR transcripts. Smaller radii and cooler colors indicate
smaller correlation between values in the gold and ASR tran-
scripts.
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