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Abstract 

This paper presents an ITMO university system submitted to 

the Speakers in the Wild (SITW) Speaker Recognition Chal-

lenge. During evaluation track of the SITW challenge we 

explored conventional universal background model (UBM) 

Gaussian mixture model (GMM) i-vector systems and recently 

developed DNN-posteriors based i-vector systems. The sys-

tems were investigated under the real-world media channel 

conditions represented in the challenge. This paper discusses 

practical issues of the robust i-vector systems training and 

performs investigation of denoising autoencoder (DAE) based 

back-end when applied to “in the wild” conditions. Our speak-

er diarization approach for “multi-speaker in the file” condi-

tions is also briefly presented in the paper. Experiments per-

formed on the evaluation dataset demonstrate that DNN- based 

i-vector systems are superior to the UBM-GMM based sys-

tems and applying DAE-based back-end helps to improve 

system performance. 

 

Index Terms: SITW, i-vector, DNN, PLDA, DAE. 

1. Introduction 

The Speakers in the Wild (SITW) Speaker Recognition Chal-

lenge [1, 2] deals with the task of speaker detection in the 

unconstrained real-word conditions. The SITW Speaker 

Recognition Challenge provides database [1] with speech 

recorded in such conditions. These recordings contain samples 

of media channels with natural characteristics of the original 

audio samples such as different noise, reverb, compression and 

other artifacts. Such varying conditions are expected to be 

difficult for speaker recognition and the main goal of the chal-

lenge is to explore new ideas for solving major problems still 

faced by current speaker recognition technology and to apply 

them to the real-world data. 

Besides “in the wild” recording conditions of the audio da-

ta there are several other important aspects of the challenge. 

The SITW evaluation had: 

 Two tracks: evaluation and exploratory. 

 Three enroll conditions: core, assist, assistclean. 

 Two test conditions: core and multi. 

 Development set: approx. 120 speakers 

Detailed challenge description is presented in [2]. 

For many participants the small amount of the ‘in-domain’ 

media channel development data leads to the necessity of 

solving the domain mismatch problem in the challenge. The 

reason is that typically large datasets like NIST SRE datasets 

of microphone and telephone channels are used for the speaker 

recognition system training. The recording conditions of these 

datasets differ a lot from those for datasets of a media channel 

provided in the SITW challenge. 

The application of the DNN-based i-vector extraction 

framework [3, 4, 5] for the speaker recognition task leads to 

significant performance improvements in comparison to con-

ventional UBM-GMM-based systems in telephone channel 

conditions. However, application of DNN posteriors based 

systems in case of domain mismatch conditions (e.g. between 

microphone and telephone channels) comes with its own set of 

issues [4, 5]. These issues result in overfitting of the system to 

the specific training conditions. It leads to performance degra-

dation of the system. The UBM-GMM-based approach can 

thus be more convenient in unconstrained conditions of media 

channels [4].  

This work presents the development of different approach-

es based on UBM-GMM and DNN when applied to the chal-

lenge dataset. Significant attention is paid to practical issues of 

robust i-vector systems training. The influence of using artifi-

cially noised training data for minimization of the mismatch 

between train and evaluation conditions is studied. In addition 

to conventional PLDA, a novel back-end based on DAE-

PLDA scheme [6, 7] is investigated. 

In order to solve a speaker recognition task in “assist” and 

“assistclean” enrollment conditions we proposed an algorithm 

that applies a speaker diarization framework to extract speech 

segments of the target speaker based on a small amount of 

manually annotated material. 

The final ITMO system for the evaluation track of the 

SITW challenge is a fusion of different subsystems with prior 

score stabilization with respect to test and enroll speech seg-

ments durations. 

The paper is organized as follows. A detailed description 

of the ITMO speaker verification subsystems is given in Sec-

tion 2. Section 3 describes the training dataset preparation. 

Section 4 presents our final experiments on the test dataset of 

the SITW Challenge. Section 5 concludes the paper. 

2. System description 

In this section we provide a description of all speaker recogni-

tion subsystems used in our work. We reviewed a number of 

existing speaker identification frameworks in order to deter-

mine efficient and promising approaches to speaker identifica-

tion “in the wild” conditions. 

2.1. UBM-GMM i-vector systems 

The UBM/i-vector framework is a well-known framework in 

the speaker recognition field. During the SITW challenge we 

decided to explore two different UBM based i-vector extrac-
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tors. One of them was the freely available i-vector extractor 

proposed by Voice Biometry Standardization (VBS)  initia-

tive. The detailed description of the VBS extractor can be 

found in [8]. This system is denoted UBMVBS /i-vector. The 

second system was implemented in-house and trained on NIST 

SRE datasets. The system is labeled UBMITMO /i-vector. 

To train our UBMITMO /i-vector extractor we used 1024 di-

agonal components GMM and 600-dimentional total variabil-

ity space. Feature vectors consist of 13 Mel-Frequency 

Cepstral Coefficients (MFCC) calculated using 20 filter banks 

in the range of 300– 3400 Hz as well as their first- and second-

order derivatives. Non-speech feature vectors were removed 

according to the energy-based Voice Activity Detection 

(VAD). Finally, the cepstral mean normalization was applied. 

2.2. DNN –based i-vector system 

Among the alternatives, state-of-the-art DNN/i-vector frame-

work provides the best speaker recognition performance in 

“clean” speech conditions [4, 5, 14]. 

In the DNN-based i-vector framework the Deep Neural 

Network substitutes the UBM in calculation of Baum-Welch 

statistics followed by the total variability factor analysis. Al-

ternatively, DNN can be used for bottleneck (BN) features 

extraction. Appending these BN features with MFCCs and 

using them in UBM/i-vector framework also provides impres-

sive speaker recognition performance [5]. 

In our work for the SITW challenge we applied only DNN 

posterior based i-vector extraction procedure. For this purpose, 

a DNN was trained on the Switchboard corpus using the 

KALDI speech recognition toolkit [9]. Outputs of the DNN 

correspond to the set of 2700 speech triphone states as well as 

20 non-speech states (noise, silence, laughing, etc.). Only 2700 

speech-related outputs were used for the calculation of statis-

tics. That prevented us from using any stand-alone VAD. The 

reader can refer to [7] for more DNN implementation details. 

20 MFCC’s (including log energy) were calculated using 23 

filter banks in the range of 20– 3700 Hz with their first- and 

second-order derivatives. Mean and variance normalization 

was consequently applied. This system was named DNN/i-

vector. 

 

2.3. PLDA back-end 

In the case of the simplified PLDA verification system we 

used the following model: 

  ( )       ( )      ,    (1) 

where   ( ) is an f-dimensional i-vector from set {       } 
obtained from R utterances belonging to the speaker s, and y, 

      (   ) are hidden speaker factors and Gaussian noise, 

respectively,  - is an eigenvoices matrix 

Given a pair of i-vectors    and   , assuming zero mean 

and skipping the scalar term, the commonly used PLDA veri-

fication score can be written as [10, 15]: 

 

        
    

    
    

     
    

 ,   (2) 
 

where square matrices P and Q can be expressed in terms of   

and   

2.4. DAE-based back-end 

Aside from the standard PLDA we studied the application of a 

denoising autoencoder (DAE) based back-end [6, 7] to SITW 

data “in the wild” conditions. 

The DAE training starts from generative supervised train-

ing of the denoising RBM (Figure 1, left). This RBM has a 

binary hidden layer and a Gaussian visible layer, taking a 

concatenation of two real-valued vectors as an input. The first 

vector  (   ) is an  -vector extracted from the  -th session of 

the  -th speaker, the second vector  ( ) is the average over all 

sessions of this speaker.  ( ) can be viewed as the maximum 

likelihood estimate in the following model of within-speaker 

variability:  (   )  ( ( )   ), where  ( ) is the Gaussian 

distribution with mean  ( ) and covariance   . 

 

Figure 1: Learning denoising transform.  (   ) is the i-vector 

representing  -th session of  -th speaker.  ( ) is the mean i-

vector for speaker  . RBM parametrs are used to initialize 

denoising neural network. 

 

Then we ”unfold” the trained RBM to form the neural 

network which we refer to as denoising autoencoder (DAE) 

[7] (Figure 1, right). DAE is discriminatively trained (fine-

tuned) to minimize within-speaker variability, defined in the 

following way: 

∑∑‖ ( )   ( (   ))‖
 

 

  

                     ( ) 

 
where   ( )     (  ) – denoising transform,  ( ) – lo-

gistic function. 

We used standard PLDA (see Section 2.4) to compute sim-

ilarity measure for DAE projections. During our experiments 

[7] we found out that the best performance of the DAE system 

was obtained when using the set of PLDA parameters estimat-

ed on i-vectors passed through the RBM instead of DAE. 

2.5. LDA-SVM back-end 

In our work we also tried to use discriminative SVM method 

at the back-end of the speaker verification system. Similar to 

[10]  SVM was applied to i-vectors after LDA projection. We 

used SVM with linear kernel and implemented s-normalization 

of the scores. The whole development set was used as impos-

tors for the SVM. 

2.6. Calibration and Fusion 

It is well-known that there is a dependency between the value 

of the minDCF threshold of a verification system and the 

duration of speech segments that were used for i-vectors ex-

traction. This is caused by a shift in target and impostor score 

distributions depending on the test and enroll speech segments 

834



duration. This effect can be compensated using Quality Meas-

ure Function (QMF): 

 

 ̂          (                 ), ( ) 
 

where   and  ̂ are the raw and calibrated scores; 

           ( ) - calibration parameters and a function, 

trained on the development dataset,       and         represent 

speech segments duration. 

Assuming a Gaussian distribution of scores the means of 

target and impostor scores distributions can be represented as 

functions of test and enroll speech segments duration. Thus, 

the scores stabilization procedure can be performed using 

approximations of those dependencies. For simplification, let 

us suppose that the target and impostor scores distribution 

variances are the same and independent of the speech seg-

ments duration: 

 

    
      

        ( ) 

 

Then the score stabilization formula is: 

 

 ̂        ,    ( ) 
where 

     
 

   
(  
    

 )   ( ) 

    
 

  
(     )    ( ) 

 

where    - target-scores mean and    - impostor-scores mean. 

To compensate the scores shifting we used an approximation 

of    and    according to the formula: 

    (       
   ) ,     (       

   ) , 

where  (     ) is a square symmetric polynomial function with 

parameters   {        };    √   (       )  and 

   √   (         )  where       and         are speech 

durations (in sec.). The function  (     ) takes the form: 

 

 (       )      
   
    (  

      
   )    (  

    
 )  

          (      )     ( ) 
 

The parameters       и     can be estimated on some devel-

opment set using mean square error (MSE) minimization for 

the polynomial approximation. 

After compensation of duration-dependent score shifting 

the BOSARIS fusion toolkit [12] was used for final subsystem 

calibration and fusion. DCF threshold    ((      )     )  
     was used for calibration, where          . 

2.7. Speaker diarization 

Audio records used in “assist” and “assistclean” enroll condi-

tions contain more than one speaker. The only available in-

formation is a hand-marked time interval on the audio records, 

which contains speech segments of the target speaker only. To 

find all speech segments of the target speaker we applied i-

vector-based speaker diarization framework. After that, result-

ing speech segments were prepared as concatenation of all 

speech segments from the hand-marked time interval and 

speech segments belonging to the speaker that has the largest 

intersection with the hand-marked interval. 

Speaker diarization framework based on i-vectors includes 

the following steps: 1) splitting the audio record into short 

speech segments (up to 1 sec.). 2) extracting i-vectors from 

these speech segments; 3) clustering i-vectors based on Varia-

tional Bayesian Analysis (VBA) and PLDA model, which was 

trained on short speech segments (up to 3 sec.). For further 

details the reader can refer to [11]. 

We used gender-independent UBM with 1024 diagonal 

Gaussians and total variability matrix of dimension 100 to 

extract i-vectors. Twenty MFCCs (without energy) were cal-

culated using 27 filter banks in the range of 100–3700 Hz 

without derivatives and without normalization.  

UBM, total variability matrix and PLDA model were 

trained using NIST’s 1998-2010 dataset without artificial data 

augmentation. 

3. Training dataset preparation 

As mentioned above, evaluation data provided in the SITW 

challenge greatly differs from commonly used training da-

tasets like NISTs, Switchboard, Fisher and so on. Different 

distortions are present in the challenge’s dataset including all 

kinds of additive noise and reverberation. Additive noise usu-

ally includes babble noise, which causes major difficulties for 

speaker modeling. Reverberation time RT60 can be as long as 1 

sec., and SNR values can be as low as 5 dB. 

In this challenge, NIST’s 1998-2010 dataset was used to 

train UBMITMO/i-vector and DNN/i-vector systems as well as 

PLDA and DAE back-ends for all systems. The prepared 

dataset is gender-balanced and consists of 8800 microphone 

and 20800 telephone sessions of 3000 speakers. 

To reduce the mismatch between train and evaluation con-

ditions a “noised” train data were generated using a MATLAB 

tool provided in the REVERB challenge [13]. In contrast to 

“clean” data, the “noised” data were obtained by distorting 

50% of audio records. Additive babble noise and reverberation 

were added to match SITW conditions as close as possible. 

4. Results 

Tables 1 to 5 summarize the results of our evaluation of 

DNN/i-vector and UBM/i-vector systems under different 

training conditions and with different back-ends. Several per-

formance measures were used to evaluate system performance 

during the SITW Challenge. In our investigations we focused 

on some of them: equal error rate (EER), minimum decision 

cost function (minDCF) with             and      

     and corresponding primary actual DCF metric. 

These results demonstrate that current state-of-the-art 

speaker identification system performance degrades when 

applied to “in-the-wild” datasets. The EER of such PLDA-

based systems reaches 10%, while EER of the best DNN/i-

vector based system is less than 2% on telephone dataset 

(NIST 2010 test, det 5 protocol). According to the Table 1, the 

DNN/i-vector system fine-tuned to the “clean” dataset condi-

tions appears to be less robust to the unconstrained recording 

conditions compared to the conventional UBM/i-vector sys-

tem. 

It is possible to compensate the mismatch degree between 

the train and test datasets by using an artificially augmented 

training dataset. This leads to improved speaker detection 

results (see Table 2, 4, 5). Here the DNN-based system pro-

vides better performance than a UBM-based one. 
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Table 1. The Evaluation results for the systems trained on 

“clean” data and with PLDA as a back-end 

Extractor name EER ,[%] min 

DCF 

act 

DCF 

UBMVBS /i-vector  11.18 0.774 0.780 

UBMITMO /i-vector  11.56 0.750 0.769 

DNN/i-vector 10.83 0.803 0.816 

 

Table 2. The evaluation results for the systems trained on 

“noised” data and with PLDA as a back-end 

Extractor name EER ,[%] min 

DCF 

act 

DCF 

UBMVBS /i-vector  11.13 0.720 0.733 

UBMITMO /i-vector  11.50 0.728 0.732 

DNN/i-vector 10.63 0.700 0.710 

 

Tables 3 and 4 also demonstrate that employing a nonline-

ar DAE+PLDA back-end improves the performance of all 

systems under consideration. This improvement is especially 

noticeable for the DNN/i-vector system when tuned on 

“noised” train data. For this case a value of 0.678 at the 

actDCF point was obtained and the EER moved 18% down 

(relative). 

Table 3. The evaluation results for the systems trained on 

“clean” data and with  DAE+PLDA as a back-end 

Extractor name EER ,[%] min 

DCF 

act 

DCF 

UBMVBS /i-vector  11.20 0.746 0.749 

UBMITMO /i-vector  11.19 0.738 0.739 

DNN/i-vector 8.96 0.781 0.786 

 

Table 4. The evaluation results for the systems trained on 

“noised” train data and with DAE+PLDA was used as a 

back-end 

Extractor name EER ,[%] min 

DCF 

act 

DCF 

UBMVBS /i-vector  11.86 0.737 0.746 

UBMITMO /i-vector  12.25 0.737 0.738 

DNN/i-vector 8.88 0.672 0.678 

Table 5. The evaluation results for the systems trained on 

“noised” data and with DAE+PLDA as a back-end with 

scores stabilization 

Extractor name EER ,[%] min 

DCF 

act 

DCF 

UBMVBS /i-vector  11.21 0.738 0.739 

UBMITMO /i-vector  11.07 0.735 0.730 

DNN/i-vector 8.41 0.669 0.675 

Table 5 demonstrates the effectiveness of applying scores 

stabilization suggested in section 2.6. 

For the LDA-SVM based systems the results for different 

extractors were roughly the same, reaching about 0.75 in terms 

of minDCF. This value is comparable to the results in Table 1, 

due to low amount of speakers in the development set that 

were used as impostors for the SVM training. 

For the SITW Challenge we decided to submit the several 

subsystems fusion results. Some of them are presented in the 

Table 6. 

Table 6. The evaluation results for different subsystem fusions. 

(EER /minDCF /actDCF) 

Subsystem names 

Evaluation protocol 

core-core 
assist-

core 

assist-

clean-
core 

UBMITMO/i-vector(DAE_PLDA) 

DNN /i-vector(DAE_PLDA) 

0.081/ 

0.645/ 

0.647 

0.063/ 

0.543/ 

0.555 

0.062/ 

0.486/ 

0.505 

UBMITMO/i-vector(DAE_PLDA) 

UBMVBS /i-vector(DAE_PLDA) 

DNN /i-vector(DAE_PLDA) 

0.077/ 

0.641/ 

0.650 

0.064/ 

0.532/ 

0.538 

0.059/ 

0.466/ 

0.469 

UBMITMO /i-vector(DAE_PLDA) 

UBMVBS /i-vector(DAE_PLDA) 

DNN /i-vector(DAE_PLDA) 

UBMVBS /i-vector(LDA_SVM) 

0.078/ 

0.645/ 

0.691 

0.075/ 

0.534/ 

0.540 

0.079/ 

0.456/ 

0.471 

 

As seen in the Table 6, minDCF values for various sys-

tems are close to each other. The last system is badly calibrat-

ed, possibly because too small development set was used for 

SVM training. 

It should be noted that the system corresponding to the 

second line in the Table 6 was used for SITW challenge, and it 

took the 3rd place on the “core-core” conditions. 

5. Conclusions 

This paper presented an ITMO university speaker recognition 

system for the Speakers in the Wild (SITW) Speaker Recogni-

tion Challenge. UBM/i-vector and DNN/i-vector based sys-

tems were investigated. When trained on “clean” dataset the 

DNN-based system proved to be less robust than the UBM-

based one in unconstrained record conditions. We demonstrat-

ed that artificial augmentation of training data can reduce 

speaker detection error in these conditions. DNN-based sys-

tems greatly benefit from this approach and demonstrates a 

substantial performance improvement. Application of the 

denoising autoencoder at the back-end level and scores stabili-

zation allow to further improve speaker detection quality. 
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