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Abstract

It has been proven that the improper function of the vocal

folds can result in perceptually distorted speech that is typically

identified with various speech pathologies or even some neuro-

logical diseases. As a consequence, researchers have focused

on finding quantitative voice characteristics to objectively as-

sess and automatically detect non-modal voice types. The bulk

of the research has focused on classifying the speech modality

by using the features extracted from the speech signal. This

paper proposes a different approach that focuses on analyz-

ing the signal characteristics of the electroglottogram (EGG)

waveform. The core idea is that modal and different kinds of

non-modal voice types produce EGG signals that have distinct

spectral/cepstral characteristics. As a consequence, they can be

distinguished from each other by using standard cepstral-based

features and a simple multivariate Gaussian mixture model. The

practical usability of this approach has been verified in the task

of classifying among modal, breathy, rough, pressed and soft

voice types. We have achieved 83% frame-level accuracy and

91% utterance-level accuracy by training a speaker-dependent

system.

Index Terms: electroglottogram waveforms, non-modal voice,

MFCC, GMM, classification

1. Introduction

The standard model of speech production describes the process

as a simple convolution between vocal tract and voice source

characteristics. In this model, the vocal tract is modeled as a

series of passive resonators that provides phonetic context to

speech communication. The voice source signal provides the

driving signal that is modulated by the vocal tract. The process

of creating the voice source signal is a complex process in which

the stream of air exiting the lungs is passed through the vocal

folds that open and close to modulate the air flow. Although the

characteristics of the source signal are generally less complex

than the output speech, it carries vital information relating to

the produced speech quality.

There are several methods of analyzing the voice source

separately from the vocal tract, including endoscopic laryngeal

imaging, acoustic analysis, aerodynamic measurement, and

electroglottographic assessment. Each approach yields slightly

different results as different signals are utilized. For acous-

tic or aerodynamic assessment, the voice source signal is ob-

tained through an application of inverse filtering that removes

vocal tract-related information from the radiated acoustic or

oral airflow signal [1]. For electroglottographic assessment,

the objective is to analyze the patterns of vocal fold contact

indirectly through a glottal conductance, or electroglottogram

(EGG), waveform [2].

Subjective voice quality assessment has a long and success-

ful history of usage in the clinical practice of voice disorder

analysis. Historically, several standards have been proposed

and worked with in order to grade the dysphonic speech. One

popular auditory-perceptual grading protocol is termed GR-

BAS [3], which comprises five qualities - grade (G), breath-

iness (B), roughness (R), asthenicity (A), and strain (S). An-

other popular grading protocol is the CAPE-V [4] which com-

prises of auditory-perceptual dimensions of voice quality that

include overall dysphonia (O), breathiness (B), roughness (R),

and strain (S). These qualitative characteristics are typically

rated subjectively by trained personnel who then relate their au-

ditory perception of the voice to the associated laryngeal func-

tion.

The exact nature and characteristics of the non-modal voice

types continues to be investigated. However, the general con-

sensus is that the breathy voice type is characterized by an over-

all turbulent glottal airflow [5], the pressed voice type is asso-

ciated with an increased subglottal pressure (as if voicing while

carrying a heavy suitcase), and the rough voice type by tem-

poral and spectral irregularities of the voicing source. Speech

scientists, speech signal processing engineers, and clinical voice

experts have been collaborating on developing methods for the

automatic detection of non-modal phonation types. The bulk of

research has focused on classification between pathological and

normal speech has been extensively developed in recent years,

see [6, 7, 8, 9, 10]. In contrast, the classification of voice mode

represents a comparatively less developed research field. The

authors in [11] employed a set of spectral measures (funda-

mental frequency, formant frequencies, spectral slope, H1, H2,

H1-H2) and achieved 75% accuracy of classification between

modal and creaky voice (a non-modal voice type associated

with reduced airflow and temporal period irregularity). In an-

other study [12], similar classification accuracy of 74% was re-

ported for the task of detecting vocal fry. A task very similar to

the one presented in this paper was explored in [13], where the

authors used skin-surface microphones to indirectly estimate

vocal function in order to classify laryngeal disorders, but ul-

timately concluded that acoustic information outperformed sur-

face microphone information.

The current study proposes a different approach that fo-

cuses on analyzing vocal function indirectly by exploiting the

frequency characteristics of EGG waveforms. The main objec-

tive of this paper is to present the results of this novel approach

to automatic classify modal and different types of non-modal

voice types. The paper is organized as follows. Section 2 pro-

vides a short overview of the nature of the EGG waveform. Sec-

tions 3 and 4 describe the experimental setup and the achieved

results, respectively. The paper concludes with a discussion of

future work in Section 5.
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2. Characteristics of the EGG signal

The electroglottograph is a device that was developed to moni-

tor the opening and closing of the vocal folds, as well as vocal

fold contact area, during phonation. The device operates by

measuring the electrical conductivity between two electrodes

that are placed on the surface of the neck at the laryngeal area.

The output EGG waveform correlates with vocal fold contact

area; thus, the EGG signal is at its maximum when the vocal

folds are fully closed, and the EGG signal is at its minimum

when the folds are fully opened [2]. The instants of glottal open-

ing and closure are most prominent during modal phonation but

can often be observed even during soft and breathy speech de-

pending on the degree of vocal fold contact.
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Figure 1: Characteristic EGG waveforms of modal and 4 types

of non-modal voice types.

Throughout the years, researchers have demonstrated that

the periodic vibrations of the vocal folds correlate with the char-

acteristic shape of the EGG waveform [14, 15, 16]. These at-

tributes are usually exploited to better understand vocal fold

contact characteristics. Another popular EGG application is the

detection of glottal closure instants (GCIs) and glottal opening

instants (GOIs) using, e.g., the SIGMA algorithm in [17].

Figure 1 displays an example of five different voice types

that were studied in this paper: modal, breathy, rough, soft, and

pressed voice types. The principal idea is to use standard mel-

frequency cepstral coefficient (MFCC) features extracted from

the EGG signal and a Gaussian mixture model (GMM) to clas-

sify among modal and non-modal voice types. The hypothesis

is that modal and different kinds of non-modal voice types pro-

duce EGG signals that have distinct spectral characteristics.

An example log-spectrum of the EGG waveform recorded

from a vocally normal speaker producing modal phonation is

illustrated in Figure 2. The spectrum is characterized primar-

ily by peaks that correspond to the fundamental frequency and

higher harmonic components. The spectrum decays rapidly

while the majority of the information is carried by frequencies

≤ 4000 Hz. The experimental setup adopted in this study em-

ploys MFCC features extracted from the EGG signal. There

were two main reasons for this. First, the MFCCs are a con-

venient and well established method to model the spectrum in

a compact way. Second, the mel-frequency filter bank is most

sensitive at lower frequencies, which is where most of the infor-

mation is contained for the EGG waveform.
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Figure 2: EGG spectrum for modal speech.

3. Method

3.1. Database

The experiments presented in this paper were performed on a

database that contains recordings collected in an acoustically

treated sound booth. The whole set consisted of 11 speakers

(six males, five females) with no history of voice disorders and

endoscopically verified normal vocal status. Each speaker pro-

duced several utterances of running speech and sustained vowel

tasks. The participant were asked to produce the vowels in their

typical (modal) voice and later in four different types of voice

quality: breathy, pressed, soft, and rough. Elicited tokens were

monitored by a speech-language pathologist; future work calls

for the auditory-perceptual rating of the elicited tokens since

it is challenging to produce a ’pure’ non-modal voice type.

Several other speech-related signals were recorded from each

participant, which were later time-synchronized and amplitude-

normalized. Some speakers read the utterance set only once,

whereas others repeated tokens multiple times. All signals were

sampled at fs = 20 [kHz]. The experiments were performed

with recordings of the sustained vowels ’a, e, i, o, u’.

3.2. Experimental Setup

The process of constructing the classifier started with extracting

the features. Parameters applied are as follow:

• Frame: Length = 2048 samples, Shift = 256 samples

(87.5% overlap), Hamming window

• Mel-filter bank: 128 filters, fmin = 50 [Hz], fmax =
4000 [Hz]

• Number of MFCCs: 14 (13 static MFCCs + 0th coeffi-

cient)

This parametrization is very similar to what is generally

used in automatic speech recognition systems, where the only

notable differences were the frame-length and the number of

filters in the Mel-frequency filter bank. The higher number of

Mel-bank filters resulted in a higher spectral resolution, espe-

cially at lower frequencies. The frame-length used in our exper-

iments was set to approximately 100 [ms], which was justified

due to the statistical quasistationarity for the sustained vowels

in the database. Table 1 summarizes the total number of frames

and the number of MFCC vectors for each voice type.

3167



Table 1: Number of frames for each voice type

Modal Rough Breathy Pressed Soft

20 296 12 623 11 764 10 335 21 530

The constructed classifier was based on GMMs character-

ized by their full covariance matrices. The means of distribu-

tions for each class were initialized to randomly selected data

points from that class. The model parameters were re-estimated

in a supervised fashion using the expectation-maximization

(EM) algorithm.

In order to draw statistically significant conclusions, we es-

tablished two different classification setups. In the first case,

one utterance was set aside as the test utterance while the rest

of data was used to train the models. The process was then

repeated for all signals in order to obtain a confusion matrix.

This approach allowed us to evaluate the classification accuracy

both at the utterance and the frame level. In the second case,

all frames were pooled together regardless of their content and

then randomly split into training-test sets with a 9:1 ratio. The

process was repeated multiple (64) times to ensure results were

robust to outlier performance. The purpose of this second setup

was to avoid training content-dependent classifiers and to exam-

ine general effects of voice type on speech. However, this setup

only allowed for evaluating frame-level classification accuracy.

4. Results and Discussion

This section summarizes the results from the series of classifica-

tion experiments on the descriptive and discriminative qualities

of the EGG signal. A detailed description of each classification

setup is provided in the corresponding section.

4.1. Separability of voice types using the EGG signal

The accuracy of the classification task depends on extracting

features that are capable of separating classes from each other

in a given feature space. Figure 3 shows the spread of observa-

tions for all the non-modal voice types from one speaker in the

MFCC[0]-MFCC[1] plane. Although the data points in this fig-

ure were obtained from a single speaker, there are still several

interesting things to note. First, different voice types occupy

different positions in the space, which certainly supports the as-

sumption that distinct voice types can potentially be separated

from each other using MFCCs. Second, breathy and soft voice

types appear to overlap. This observation indicates that EGG

spectra for these two voice types are similar (which was ex-

pected), and thus classification between breathy and soft phona-

tion is challenging. Third, the pressed and rough voice types

are located near each other while the modal voice is located

in between. Finally, the outlier data points are in fact silence

segments as no voice activity detection was applied to remove

them. Rather, we set the number of mixtures to two and let the

system model these ”garbage” frames with one mixture from

each class. Although Figure 3 is a simplification of the analysis

by only displaying the first two MFCCs, the exercise was in-

structive to begin to understand the separability of voice types

using MFCCs of the EGG signal.

4.2. Two-class classification

In the first series of experiments, we constructed speaker-

dependent classifiers that were trained and tested on data from

a single speaker. The primary goal was to avoid introducing
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Figure 3: Modal, rough, breathy, pressed and soft voice in

MFCC[0]-MFCC[1] plane.

additional speaker variability and to measure the discriminative

potential of MFCC features extracted from the EGG signal in

the most optimal scenario. These experiments were performed

using the second data splitting method.

Table 2 summarizes results from a two-class classification

task between modal and one type of non-modal voice type. This

setup excludes the potential of overlap among non-modal voice

types and focuses solely on assessing the differences between

modal and any manifestation of non-modal voice type. Even

though the task is fairly simple, it is still able to provide an ini-

tial insight into the discriminatory qualities of EGG using ob-

jective methods to complement the observations of the scatter

plot in Figure 3. The highest accuracy of 98.74% was achieved

for the rough voice. These results would indicate that the

rough voice type is easily distinguishable from modal speech.

These results were followed closely by breathy, pressed, and

soft voice types. The obtained results demonstrate that classi-

fication of modal and non-modal speech may be successfully

accomplished using EGG waveforms.

Table 2: Frame-level accuracy [%] of two-class classification

between modal and a given non-modal voice type.

Rough Breathy Pressed Soft

Modal 98.74 97.22 96.78 94.46

4.3. Frame-level splitting five-class classification

Whereas the purpose of the previous section was to do an ini-

tial evaluation on the separability of voice types using EGG, the

goal of this section was to perform more realistic tests using

five-class classifiers. The main advantage of this setup was the

fact that it took potential overlap among different non-modal

voice types into account. The data was once again split using

the random frame distribution method. The frame-normalized

accuracy for all speech types is summarized in the full confu-

sion Table 3.

There are several interesting conclusions that can be drawn

from Table 3. The modal voice type achieved the highest over-

all classification accuracy of 93.8% and was most often con-

fused with soft and breathy voice, in that order. The second-

best results were obtained for breathy voice (89.5%), followed

by pressed (83.3%), rough (83.3%), and soft (79.5%) voice

types. A closer analysis of the confusion table support the previ-
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ously stated conclusions about data overlap to a certain degree.

We observe that breathy voice is most often confused with soft

speech (4.4%); however, the converse was not true. Soft voice

frames were labeled as being pressed more often than breathy.

Another interesting thing to note was the fact that a relatively

wide spread of rough voice into other clusters caused problems

for all other non-modal voice types; this result may be due to

the intermittent and unstable production of a rough-sounding

voice. These voice types were produced by untrained speakers,

and it is highly probable that multiple voice types were exhib-

ited in each token. Similar, the pressed voice type is difficult

to elicit as a pure dimension and consequently contributes to its

classification as either breathy or pressed.

Results support the conclusion from the previous experi-

ment and prove that voice modality may be successfully identi-

fied solely from the EGG signal. The results also indicate that

a 100[ms] segment is satisfactory to classify voice type with an

average accuracy of 83%.

Table 3: Frame-level accuracy [%] of five-class classification

with data frames split randomly into training and test sets.

Recognized

Modal Rough Brea. Press. Soft

A
ct

u
al

Modal 93.8 1.2 1.7 0.8 2.5

Rough 0.7 83.3 4.6 8.2 3.2

Brea. 1.8 3.1 89.5 1.2 4.4

Press. 1.7 7.9 3.0 83.3 4.1

Soft 2.7 5.7 4.1 8.0 79.5

4.4. Utterance-level splitting five-class classification

Splitting data at the utterance level and assigning certain frames

from the same utterance to both the training and test sets creates

a problem as the classifiers are potentially able to learn on the

test data. Due to this reason, the following five-class classifica-

tion task was performed with data that was split at the utterance

level. As a consequence, it allowed for the comparison of both

frame-level and utterance-level classification accuracy.

Table 4 summarizes the frame-level five-class classification

performance using the utterance level split. As such, these re-

sults are directly comparable to the ones already presented in

Table 3. We can observe a general trend of declining accuracy

for all voice types. The lowest performance drop of 1.34 per-

centage points (pp) was observed for soft speech. We saw

a 4 pp drop for modal, rough, and pressed voice types and

13 pp for breathy. One interesting thing to note was the fact

that breathy voices were misclassified as soft in approximately

the same number of cases as soft was misclassified for breathy;

11.33% vs. 11.18%, respectively. Finally, rough and pressed

voice types displayed qualitatively similar trends as they were

often misclassified for each other. Our previous experiments did

not display this kind of clear division between different voice

types.

Table 5 summarizes the utterance-level accuracy that was

obtained from the frame-level classification by selecting the

most occurring class. Although we observe a significant in-

crease in the overall accuracy across all classes, the general

trends correspond to the trends observed in Table 3.

5. Conclusion and Future Work

This paper presents a novel approach of voice modality clas-

sification that is based on processing the EGG signal, an indi-

Table 4: Frame-level accuracy [%] with taking out one utter-

ance and training on rest.

Recognized

Modal Rough Brea. Press. Soft

A
ct

u
al

Modal 89.1 1.5 1.9 2.6 4.9

Rough 0.7 78.5 7.1 11.4 2.3

Brea. 3.6 6 73 6.1 11.3

Press. 2.9 9.8 4.6 80.6 2.1

Soft 6.0 2.3 11.2 2.3 78.2

Table 5: Utterance-level accuracy [%] with taking out one ut-

terance and training on rest.

Recognized

Modal Rough Brea. Press. Soft

A
ct

u
al

Modal 98.5 0 0 0 1.5

Rough 0 85.5 2.7 11.8 0

Brea. 1.7 1.7 91.4 1.7 3.5

Press. 0 7.8 1.6 90.6 0

Soft 2.9 0 5.7 0 91.4

rect measure of vocal fold contact available in laboratory set-

tings. The EGG waveforms were parametrized using a standard

MFCC scheme, and the extracted features were then classified

using GMMs. The models were trained to be speaker depen-

dent, and a series of tests were conducted to demonstrate the

viability of this approach. The primary task was to classify

among modal, breathy, rough, pressed, and soft voice types.

The presented method achieved 83% frame-level accuracy and

91% utterance-level accuracy. A closer look at the confusion

matrix reveals that modal voice achieved the highest accuracy

regardless of the classification task and setup. This result indi-

cates that the spectral composition of modal EGG is more dis-

tinct from other non-modal EGGs than the non-modal types are

different from each other. The breathy voice type was observed

to be similar to the soft voice type, and rough was often inter-

changeable with pressed voice. In fact, the reality is that the

frames of a particular utterance may be characterized not only

by multiple voice modes within the same token, but each frame

may be described as exhibiting proportions of the different non-

modal voice types. Auditory-perceptual ratings of an utterance

along various dimensions (e.g., using the CAPE-V form) may

aid in enhancing the ground truth labeling of voice type.

This work represents an initial study on the discrimina-

tory qualities of EGG waveforms and their spectral character-

istics for voice modality classification. Current results indicate

that there is a great variation in EGG among speakers which

makes construction the speaker-independent classifier a chal-

lenging problem at the moment. The authors believe that the

described methods can be extended into the field of dysphonic

speech classification as the studied qualities are often observed

by patients with various voice pathologies. This clinical direc-

tion represents the potentially most important application of this

work.
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