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Abstract
Speech recognition systems that combine multiple types of
acoustic models have been shown to outperform single-model
systems. However, such systems can be complex to implement
and too resource-intensive to use in production. This paper de-
scribes how to use knowledge distillation to combine acous-
tic models in a way that has the best of many worlds: It im-
proves recognition accuracy significantly, can be implemented
with standard training tools, and requires no additional com-
plexity during recognition. First, we identify a simple but par-
ticularly strong type of ensemble: a late combination of recur-
rent neural networks with different architectures and training
objectives. To harness such an ensemble, we use a variant of
standard cross-entropy training to distill it into a single model
and then discriminatively fine-tune the result. An evaluation on
2,000-hour large vocabulary tasks in 5 languages shows that the
distilled models provide up to 8.9% relative WER improvement
over conventionally-trained baselines with an identical number
of parameters.
Index Terms: acoustic modeling, knowledge distillation, en-
sembles, deep neural networks, long short-term memory

1. Introduction
A variety of work in speech recognition combines predictions
from multiple models or systems to improve recognition ac-
curacy. The ROVER [1] method, for example, tries to mini-
mize errors by combining the outputs of parallel recognizers
through a voting scheme. More recent work has explored com-
bination at the acoustic model level [2], in particular by fus-
ing together neural networks with distinct, complementary ar-
chitectures. Examples include “stacking” posterior predictions
from a deep neural network (DNN), convolutional neural net-
work (CNN), recurrent neural network (RNN) [3] and hybrid
architectures that fuse CNN and DNN structures earlier in the
model [4, 5]. These approaches capitalize on each architecture’s
strengths to improve accuracy. While such methods can give
significant improvements in recognition accuracy, these types
of models can be difficult to deploy. First, typically both train-
ing and prediction infrastructure need to be modified in com-
plex ways to support a new model architecture. Furthermore,
the combined models may be too large or resource intensive for
real-time use. Scoring with the stacked ensemble of [3], for
instance, essentially requires making predictions for three sep-
arate models.

We use knowledge distillation or model compression [6, 7]
to address such issues. At a high level, distillation involves
training a new model, which we dub the student, to match the
soft outputs (posteriors or logits) of an already-trained teacher,
rather than hard class labels. We use Kullback-Leibler (KL)
divergence to minimize the difference between student and

teacher output distributions, which is similar to approach for
performing model adaptation as described in [8]. In previous
work, knowledge distillation was predominantly used for train-
ing small models using outputs of single large models. Romero
et al [9] train thin deep neural networks to imitate outputs of
large wide networks. Li et al [10] distill knowledge from a
large DNN to a smaller DNN by matching their output distri-
butions with KL-divergence. The authors use a large set of un-
transcribed data to create training labels for their student model
and show significant performance improvement compared to
the conventional training methods. Similarly, Chan et al [11]
distill knowledge from a RNN to a DNN, which likewise im-
proves the WER of the student model. In contrast, in our work,
we focus on applying this technique to ensembles and show that
this substantially increases the single model performance. In
particular, each teacher is an ensemble of different recurrent
neural networks and each student is a single such model. Af-
ter distillation, the student model typically retains most of the
predictive accuracy of its teacher. Crucially, while the former is
large and slow, the latter is small and fast enough to be used in
a production system. Furthermore, the distillation process can
be carried out with standard training tools as it is equivalent to
cross-entropy training with the ensemble posteriors as targets.

Producing strong student models with distillation first re-
quires constructing teacher ensembles that have high predictive
accuracy. The ensembles in this work are built simply by av-
eraging the context-dependent state posteriors of individually-
trained neural network models. We not only combine models
with complementary architectures (in the spirit of [3, 4, 5]) but
also different individual training criteria. In particular, we use
combinations of Long Short-Term Memory (LSTM) [12] and
Convolutional LSTM Deep Neural Networks (CLDNN) [13]
models trained with both cross-entropy (CE) and state-level
minimum Bayes risk (sMBR) criteria [14].

We evaluate both the ensembles and the student models dis-
tilled from them on 2,000-hour LVCSR tasks in 5 languages.
Empirically, our ensembles capture the complementary proper-
ties of their constituent models and give significant improve-
ments over any one individually. More importantly, the (much
smaller) student models retain most of the predictive power of
the ensembles, and sometimes exceed it when fine-tuned with
discriminative sequence training. Overall, our training proce-
dure provides up to 8.9% relative WER improvement over base-
line models with an identical number of parameters.

The rest of this paper is structured as follows. Section 2
describes our particular ensemble method and an oracle-based
metric for choosing models that will combine well. Section
3 describes how we use the ensembles to train and fine-tune
the student models. Section 4 provides experimental results on
LVCSR tasks to validate the proposed method. Finally, Section
5 concludes the paper.
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2. Ensembles of acoustic models
This section explains how ensembles of LSTM and CLDNN
acoustic models can be used to improve speech recognition per-
formance. We describe how the combination is performed and
how to choose strong ensemble candidates.

2.1. Combination of acoustic model scores

We use a simple but effective late combination method to con-
struct acoustic model ensembles. Given N models that have al-
ready been trained on available data (through whatever means),
we combine their frame-level predictions by taking a weighted
average of their context-dependent (CD) state posteriors. That
is, for each frame of audio x, the ensemble emits a vector of
posteriors over CD states s computed as

Pens(s|x) =
∑N

i=1 wiPi(s|x), (1)

where Pi are posteriors from the i-th model, wi ∈ [0, 1] is its
weight, and

∑N
i=1 wi = 1. This method does require that the

constituent models have identical CD state inventories (i.e. cor-
responding outputs of the same dimensionality) and emit time-
synchronous predictions. The conditions can be satisfied by
construction when building the individual models.

To find the optimal weights, we perform grid search over
the weight combinations and choose the one that leads to the
best performance of the complete recognition system on a given
data set.

2.2. Choosing a good ensemble

What types of models yield the best improvements when com-
bined into an ensemble? As noticed in prior work (e.g. [15, 16]),
models that tend to make errors on different inputs can compen-
sate for one another in combination and make fewer errors than
any model individually. One widely used ensemble method,
boosting, induces such behavior by construction, by training a
sequence of classifiers that attempt to correct the errors of the
previous ones (e.g in [17]). In this work, as in [3, 4, 5], we in-
stead use the fact that different neural network architectures can
make systemically different errors. Unlike previous work, we
also exploit the idea that different training criteria can lead to
different errors.

In practice, it is desirable to have a quantitative measure that
indicates which acoustic model combinations might lead to the
highest gains in an ensemble. Such a metric seems difficult to
compute because Equation (1) defines how predictions are com-
bined at the frame level, while the ultimate goal is to minimize
the word error rate. However, it is possible to bridge that gap
by replacing the real combination function with an oracle that
approximates the best possible ASR outcome of the ensemble.
Specifically, the oracle

Poracle(s|x) =
∑N

i=1[O(u) = i]Pi(s|x) = PO(u)(s|x), (2)

where, in place of soft combination weights, the oracleO(u) ∈
1 . . . N gives all weight to the model that yields the fewest word
errors on the current utterance u. Such an oracle is easy to
construct for any set of transcribed utterances; building it just
requires plugging each individual model into the ASR system
and computing the number of word errors made on each utter-
ance. As we show in Section 4.1, the real weighted-average
ensembles never achieve the oracle performance, but the ora-
cle’s WER reliably predicts which combinations will perform
best.

Model 1 Model 2 Model N

Combination 
Function

CD Posteriors

Teacher Ensemble

Student Model

Soft Labels

Utterances

Input Features

…

Figure 1: Knowledge distillation framework. Utterance input
features are used to create soft labels from the teacher ensemble.
CD posteriors of ensemble models are aggregated by using a
combination function (e.g. weighted average), which provides
training data for the student model.

3. Distilling knowledge from ensembles
The main idea of knowledge distillation [7] is to train a model
(student) on outputs of another model (teacher). Given a data
set with hard labels, i.e. where each data sample is assigned to
a single label, we first train a teacher model that outputs prob-
ability distribution over all labels (soft labels) given the input
features. If we have a well-performing large teacher model, it
is possible to achieve better performance in a smaller student
model by training it on the soft outputs of the teacher model
instead of directly on the hard labels. Such training makes the
student model mimic the behavior of the teacher model. The
soft labels might contain more information about the underly-
ing label distribution than the hard assignments and might be
easier to learn for the student model.

In this work, each teacher is an ensemble of individually-
trained models whose predictions are combined with Equation
(1), and each student is a single CLDNN model. In practice
the teacher ensembles perform substantially better than single
models, but are too inefficient to use in real systems. The goal of
distillation is to transfer the predictive accuracy of those ensem-
bles into the single student models, which are efficient enough
to deploy. In the following, we describe the approach of training
the student based on the outputs of a teacher ensemble, as well
as ways to further improve the student performance. Figure 1
shows our general framework for knowledge distillation. Given
the input features from utterances, CD output posteriors of en-
semble models are combined to create soft labels for training
the student model.
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3.1. Distillation through cross-entropy training

In our setting, the outputs of each teacher and student mod-
els are posterior probabilities over the same set of context-
dependent states. In order to make a student model mimic its
teacher, we train the former to emit posteriors that are as close
as possible to those of the latter, given the same audio. This can
be achieved by minimizing the Kullback-Leibler (KL) diver-
gence [18] between student and teacher distributions. Letting
Pens(s|x) be the posterior distribution of the teacher ensemble
(defined in (1)), and Q(s|x) the posterior distribution of the stu-
dent model, we wish to minimize

DKL(Pens(s|x)‖Q(s|x)) =
∑
i

Pens(si|x) ln
Pens(si|x)
Q(si|x)

= H(Pens, Q)−H(Pens),

with respect to the parameters of Q(·). Here,

H(Pens, Q) =
∑
i

−Pens(si|x) lnQ(si|x)

is the cross-entropy (CE) error between the teacher and student
distributions, and

H(Pens) =
∑
i

Pens(si|x) lnPens(si|x)

is the entropy of the teacher distribution. The teacher entropy
is not a function of Q and thus has no influence on training; it
vanishes when computing gradients with respect to the student
model parameters. Thus, the KL-divergence is minimized by
minimizing the CE error, and the optimization procedure be-
comes equivalent to standard cross-entropy training. The only
difference is that instead of the one-hot CD states typically used
as training labels, we substitute a soft distribution over the CD
states from the teacher ensemble. This procedure is essentially
a simplified version of the more general temperature-based dis-
tillation of Hinton et al. [7].

3.2. Improving student model

After running CE training on the soft outputs of a teacher en-
semble, the student performance may be considerably lower
than that of the teacher. We found that the following techniques
can improve the student.

First, rather than initializing the student with random
weights, we start it with a copy of the parameters from one of
the ensemble models. In practice this causes the student to con-
verge faster and have better performance. This scheme requires
initializing from a model with the same architecture, e.g. if the
student is a CLDNN model we have to use a CLDNN with anal-
ogous structure from the teacher ensemble. If there are several
models with the suitable architecture available in an ensemble,
we choose the model with the highest combination weight.

Second, further performance gains can be achieved by run-
ning discriminative sequence training on the student model af-
ter distillation. For this, we make a copy of the distilled student
model and apply the sMBR training method of [19] on it. Doing
so typically improves the student model, as we show in Section
4.2. sMBR training does not use the teacher ensemble; its train-
ing labels come from the original audio transcriptions.

4. Experiments
This section presents experiments to evaluate our methods for
ensemble selection and knowledge distillation in multiple lan-
guages. All models described below are trained on sets of

LSTM (SMBR) + CLDNN (CE)

LSTM (SMBR) + CLDNN (SMBR)

LSTM (SMBR) + LSTM (CE)
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Figure 2: Word error rates of two-model combinations as a
function of combination weight. x-axis shows the weight w1 of
the first model in the ensemble, the weight of the second model
is w2 = 1.0 − w1. Dotted lines show WERs of oracles that
choose the best model for each utterance. In both languages,
the relative order of oracles indicates which model combina-
tions work best. Sometimes (top figure) the best ensembles are
those combining different architectures and training methods.

3 million utterances (approximately 2,000 hours) using asyn-
chronous stochastic gradient descent optimization [20]. For
evaluation purposes, we measure word error rates (WERs) on
test sets of 30,000 utterances (approximately 20 hours) per lan-
guage. All data sets are anonymized and hand-transcribed. The
training sets are representative of Google’s overall speech traf-
fic, and the test sets are from the voice search domain.

4.1. Finding good ensembles

To investigate which types of acoustic models combine well,
we evaluated various ensembles on French (fr-FR) and British
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English (en-GB) recognition tasks. Specifically, we considered
two-model combinations from a pool that varied architecture
and training method, i.e. {LSTM, CLDNN} architecture with
{CE, sMBR} training. As described in Section 2.2, an oracle
can be used to estimate which model combinations will be the
most complementary. Figure 2 shows the WERs of each en-
semble with different combination weights, as well as the WER
of its oracle combination (dotted lines). The x-axis shows the
weight w1 of the first model in the ensemble, the weight of
the second model is w2 = 1.0 − w1. Thus, the most left and
the most right points (0.0 and 1.0 on the x-axis) correspond to
the WERs of the single models and points in-between to their
weighted combinations.

As the results show, all model combinations yield better
recognition accuracy than their constituent models individually,
which shows that our simple late combination strategy is effec-
tive. In both French and British English tasks, the best model
combinations are those that mix models with different architec-
tures. The French results demonstrate that it can be advanta-
geous to mix models of different training methods as well: The
lowest WERs overall are achieved by combining LSTM-sMBR
and CLDNN-CE models, which outperform the LSTM-sMBR
and CLDNN-sMBR pair. As expected, it appears such diverse
models make systematically different errors, allowing them to
compensate for one another in combination.

In most cases, the order of oracle WERs of each combi-
nation corresponds to how well the real, weighted ensembles
performed. This indicates that we can use the oracle WER to
anticipate which model combinations will work well in prac-
tice. As discussed previously, such oracles can be computed
easily for a given test set, needing only ASR evaluations of each
model individually. As can be seen in both languages, the or-
acle performance is always better than the best performance of
a weighted combination. This indicates that there is space for
improvement of the combination function, e.g. by using a non-
linear combination. Parameters of such a combination function
can be learned during the training phase.

4.2. Knowledge distillation

Multi-model ensembles are typically too resource-intensive to
deploy in real ASR systems. Thus, after finding ensembles that
work best (using the methodology from the previous section),
we used the procedure discussed in Section 3.1 to distill the
ensembles to single student models. We evaluated our approach
on ASR tasks in five languages: British English (en-GB), US
Spanish (es-US), French (fr-FR), Korean (ko-KR) and Brazilian
Portuguese (pt-BR). In all experiments, the student model was
a CLDNN model as described in [13].

Table 1 shows WERs of best ensembles with their respec-
tive combination weights, student models after CE training, and
the same students after additional sMBR training. We evalu-
ated combination of up to four models (including LSTM-CE,
LSTM-sMBR, CLDNN-CE and CLDNN-sMBR models) and
chose the combinations with the highest performance, which
are presented in the table. The table also shows the relative
change of WER compared to a baseline, which is the best sin-
gle candidate model available for the given language (normally
a CLDNN-sMBR model). As we see, all of the ensembles lead
to performance gains, with largest gains on fr-FR (8.0% im-
provement) and ko-KR (7.2% improvement).

As the results show, the student models yield significant
improvements over the baseline single-CLDNN models. After
CE distillation alone, the student models give 2.4-6.2% better

Ensemble Baseline Ensemble Student WER
(bold: initializer) WER WER CE CE+sMBR

en-GB
0.5 · LSTM (sMBR)
0.4 · CLDNN (sMBR)
0.1 · CLDNN (CE)

13.1
12.6

(-3.8%)
12.6

(-3.8%)
12.6

(-3.8%)

es-US
0.5 · LSTM (sMBR)
0.5 · CLDNN (CE)

11.8
11.2

(-5.2%)
11.3

(-3.9%)
10.7

(-8.9%)

fr-FR
0.5 · LSTM (sMBR)
0.5 · CLDNN (CE)

16.2
14.9

(-8.0%)
15.2

(-6.2%)
15.0

(-7.4%)

ko-KR
0.4 · LSTM (sMBR)
0.3 · CLDNN (sMBR)
0.3 · CLDNN (CE)

11.1
10.3

(-7.2%)
10.6

(-4.5%)
10.5

(-5.5%)

pt-BR
0.7 · LSTM (sMBR)
0.3 · CLDNN (CE)

11.7
11.3

(-3.2%)
11.4

(-2.4%)
11.2

(-3.6%)

Table 1: Knowledge distillation results. WERs of teacher en-
sembles and CLDNN student models after CE distillation and
after additional sMBR training. Baselines are the single-best
models from each ensemble. CE distillation alone always im-
proves over the baseline, and sMBR usually gives additional
gains.

WER than their respective baselines. Furthermore, in most lan-
guages, the student performance improved further after sMBR
fine-tuning. In es-US and pt-BR, the final student models even
surpassed the performance of their teacher ensembles, achiev-
ing 8.9% and 3.6% relative WER reduction, respectively. As
mentioned previously, good model initialization was important
for achieving low WERs. For example, the final en-GB student
model had 13.5 WER when initialized with random weights (vs.
12.6 when initialized from an existing model).

Altogether, the full recipe produces single CLDNN models
that substantially outperform baselines that were trained on hard
labels. This is particularly impressive given that the student and
baseline models have the same architecture and identical num-
bers of parameters.

5. Conclusion
This work found a simple but powerful class of acoustic model
ensembles consisting of LSTM and CLDNN models built with
different training objectives. We developed an oracle-based
measure to identify the best-performing ensembles and used
knowledge distillation to train single CLDNN models having
close to – or exceeding – the predictive power of those ensem-
bles. In contrast to some prior work, our method is easy to
implement on top of standard training tools and produces single
models that are small and efficient enough to deploy in real ASR
systems. Our recipe gives up to 8.9% relative WER improve-
ments over identically-structured baseline models, showing that
it can train better models without the need to change the model
architecture.
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