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Abstract
This paper presents a text to speech (TTS) extension to

Kaldi - a liberally licensed open source speech recognition sys-
tem. The system, Idlak Tangle, uses recent deep neural network
(DNN) methods for modelling speech, the Idlak XML based
text processing system as the front end, and a newly released
open source mixed excitation MLSA vocoder included in Id-
lak. The system has none of the licensing restrictions of current
freely available HMM style systems, such as the HTS toolkit.
To date no alternative open source DNN systems are available.
Tangle combines the Idlak front-end and vocoder, with two
DNNs modelling respectively the units duration and acoustic
parameters, providing a fully functional end-to-end TTS sys-
tem.

Experimental results using the freely available SLT speaker
from CMU ARCTIC, reveal that the speech output is rated in
a MUSHRA test as significantly more natural than the output
of HTS-demo, the only other free to download HMM system
available with no commercially restricted or proprietary IP. The
tools, audio database and recipe required to reproduce the re-
sults presented in these paper are fully available online.
Index Terms: Speech synthesis, Kaldi, Idlak, HTS, DNN

1. Introduction
Statistical parametric speech synthesis based on Hidden
Markov Models (HMMs) has become a common method for
generating highly intelligible, flexible speech output. The dom-
inant system, HTS [1], has been developed for over a decade,
and led the way in developing parametric synthesis approaches
and algorithms.

More recently, spurred on by the success of Deep Neu-
ral Networks (DNNs) in speech recognition [2], significant re-
search has been carried out investigating the use of DNNs in
parametric speech synthesis [3]. One approach is the use of
DNNs to replace Gaussian mixture models (GMMs) associated
with leaf nodes of decision trees. Ling et al. [4], using restricted
Boltzmann machines (RBMs) claim a neural network approach
is better at learning spectral detail than GMMs and decision
trees, resulting in better quality speech output. Furthermore,
DNNs offer the ability to model high-dimensional acoustic pa-
rameters [5].

The work presented here does not attempt to extend the
state-of-the-art in DNN synthesis. Rather, the objective is to
offer both a simple, understandable baseline for the commu-
nity that can be compared against more complex systems, and
a practical recipe that offers a real opportunity for open source
development of Text-To-Speech (TTS) in under resourced lan-
guages without requiring access to bespoke and propriety tech-

niques. Furthermore, by embedding the system within Idlak-
Kaldi, we believe that parallel work in speech recognition can
be more readily harnessed to improve TTS, and that by offering
a reproducible system with a significant improvement in quality
from the currently unrestricted HMM-based solution, and with-
out license restrictions, we can greatly encourage advances in
the field.

Idlak is a project to build an end-to-end parametric syn-
thesis system within Kaldi [6], a liberally licensed Automatic
Speech Recognition (ASR) toolkit. As part of Idlak, a front-
end that generates full-context models compatible with HTS has
been developed [7]. This front-end performed well in an evalu-
ation against Festival, a standard front-end used by HTS. In this
paper, we explore the use of one of Kaldi’s DNN frameworks
as an alternative to the HTS/HTK system. We have called this
end-to-end TTS-DNN system Tangle. As with Kaldi, Idlak and
Tangle are both liberally licensed.

The system we present first uses Kaldi to carry out a phone
alignment on a single-speaker corpus. This alignment is then
used to train two cascading DNNs: one for predicting unit du-
rations, and one for predicting acoustic output. Also incorpo-
rated are analysis and synthesis tools to perform MLSA vocod-
ing with mixed excitation [8] and a simple recipe to encourage
other research groups to reproduce our results. All the neces-
sary code can be downloaded from the Kaldi-Idlak repository1

allowing our results to be reproduced. Tangle only depends on
tools that use either BSD (SPTK, expat, PCRE), Apache (Kaldi,
openfst), or MIT (pugixml) licenses, allowing the use of Tangle
for commercial or academic applications. Tangle is itself re-
leased under the Apache license.

The primary motivation for our work can be summarised as
follows:

1. It is part of a long-term goal to produce a Kaldi-based
end-to-end parametric speech synthesis system. HTS
suffers from licensing restrictions that prevent a standard
open-source model. In addition, many new approaches
in ASR are already implemented within Kaldi, such as
sophisticated DNNs [9] and sub-space modelling [10].
This would allow current and future ASR developments
to be directly incorporated into speech synthesis as they
become available and vice versa.

2. High quality vocoders are a requirement for a good
sounding parametric TTS system; however most of the
available ones are either low quality or suffer from li-
censing restrictions that make them unsuitable to be in-
cluded directly into an open source project with a liberal

1Currently the Idlak branch of Kaldi can be installed with git
clone https://github.com/bpotard/idlak.git
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license. By re-implementing state-of-the-art vocoding
techniques into Kaldi, we hope to bridge that gap and of-
fer the first free high quality parametric Text-to-Speech
system.

3. By making our system openly available, together with
the tests we describe, we offer a useful test harness and a
better sounding baseline than HTS-demo to the commu-
nity.

In the following sections we discuss the choice of our HMM
based (HTS) parametric speech synthesis baseline, a descrip-
tion of the DNN modelling process, and the speech synthesis
process. We continue by carrying out a listening test compar-
ing a set of different synthesisers, present our evaluation and
conclude by discussing the choices made in our design, and po-
tential future work.

2. Using HTS-demo as an Idlak baseline
Idlak supplies a bash script to download and build the publicly
available HTS-demo and its dependencies for Linux based sys-
tems for comparisons. The full-context models for both training
and running the system are then replaced as detailed in [7] and
the Idlak documentation. Subsequently, standard HTS-demo
training is carried out, followed by the equally standard syn-
thesis of the beginning of Lewis Carroll’s “Alice’s Adventures
in Wonderland”2 using HTS-engine.

HTS-demo was chosen as a baseline, not because it is the
best HMM system available (there are many better and more
sophisticated systems presented in previous research), but be-
cause it is the only system we could source that did not require
proprietary audio databases, proprietary lexicons, or proprietary
signal analysis (e.g. STRAIGHT [11]). Kaldi itself was partly
the result of the difficulties of adapting HTK for research work
because it has license restrictions that considerably limits its use
in conventional open source projects. These same restrictions
are present in HTS-demo, which relies on HTK to build HMM
models and trees together with a patch. However, the models
created by the training process can then be freely distributed
and some can be used using free software tools.

In this paper we will compare Tangle to the output of HTS-
demo (v. 2.3 alpha) using the SPTK toolkit (v. 3.6) for acoustic
analysis, and HTS engine (v. 1.07) for synthesis. The speech
database used is the standard HTS-demo database, i.e. CMU
ARCTIC speaker SLT, upsampled to 48 kHz.

3. DNN-based duration and acoustic
models

3.1. Generalities

A collection of tools and scripts were added to the Idlak toolkit
to allow the training of DNNs suitable for TTS. The internal
structures, training procedures and methods were derived from
the nnetbin DNN variant of Kaldi.

The Idlak front-end analyses and normalises input text, then
generates a rich phonetic and contextual representation from it,
a.k.a “full labels”. The Idlak text processing modules each op-
erate on an XML marked-up stream of text. Each module will
typically add structure to the XML and may be dependent on
structure added by previous modules. Figure 1, shows the cur-
rent modules that form idlaktxp. See [7] for more details.

2The full text is available from Project Gutenberg
http://www.gutenberg.org/ebooks/11

Figure 1: Idlak text processing system (idlaktxp). The system
comprises of a set of modules operating on XML input and pro-
ducing further tagged XML.

In tangle, two deep neural networks need to be trained: a
Duration Model DNN (DM-DNN) that will predict the dura-
tions of both phones and HMM states from input phone labels,
and an Acoustic Model DNN (AM-DNN) that will predict an
acoustic sequence from a sequence of acoustic labels.
Figure 2 summarises the training procedure.

The AM-DNN training requires a frame-level mapping be-
tween input labels and acoustic features; therefore the unit-level
labels have to be sampled so that we have an input label per
acoustic frame. Based on our previous work [12], we chose to
add 2 numerical values to the full context labels, respectively
coding for the frame position within the current HMM state,
and the position within the current phone. We treated the state
identity as a numerical value rather than a categorical feature.

As this system is more intended to be used as a light-weight
baseline rather than a state-of-the-art system, the DNNs were
built using relatively modest numbers of hidden layers (3), and
nodes (100 and 700, respectively, for the duration and acoustic
models) in each layer. Each layer comprised an affine compo-
nent followed by a sigmoid activation function.

The input data (label) was further normalized for each com-
ponent to be of zero mean and unit variance. To reduce the
issues linked to frame-by-frame independence, we spliced to-
gether 11 input frames (5 back, 5 front), which gave us input
dimensions of respectively 4125 and 4169 for duration / acous-
tic DNNs.

The output data (duration or acoustic) was normalized glob-
ally so that each output component had values between 0.01 and
0.99; the output activation function was a sigmoid.

Unlike other approaches (such as Zen [13] or Qian [14]),
we did not remove silent frames from the training, as it was not
found to be necessary for synthesis quality. The training proce-
dure was standard: we used a stochastic gradient descent based
on back propagation. The minimisation criterion was the Mean
Square Error (MSE). We did not use dropout. The training was
run on a training set, and we used a development set for cross-
validation.
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Figure 2: Tangle DNN training architecture

3.2. Forced alignment procedure

A forced alignment procedure performed on the full database
was used to align the full context labels with the acoustic data,
using standard tools from the Kaldi toolkit.

The models for the alignment were trained on the train-
ing plus development sets, and state-level labels force-aligned
to acoustic frame boundaries were generated for the training
and development sets. The models used were 5-states left-right
HMMs with multiple Gaussians, 3230 tied HMM states and
about 50k Gaussians were used. The acoustic features used
for alignment were order 13 MFCC with first and second or-
der derivatives.

3.3. Duration modelling DNN

We trained a first DNN to learn a mapping between full label
information and the respective durations of states and phones.

The input of this DNN is the full label mapped to numerical
features, the output is the respective duration (as a number of
frames) of the “units” the label belong to, which we limited to
phone and HMM state, as extracted from the forced alignment.

In case some states had been skipped in the alignment, input
for the skipped states were added with an output duration of 0
for the state.

3.4. Acoustic modelling DNN

The input of this DNN needs to have the same sampling rate as
the acoustic data, so the full labels with state and phone dura-
tion need to be oversampled. In practice, we duplicate as many
state-level labels as needed based on the output predicted by the
DM-DNN. The input frames within a state are then made dis-
tinct by appending quantized positions, respectively within the
current state, and within the current phone. The positions within
the state were restricted to 5 distinct values, while the positions
within the phone were restricted to 10 distinct values.

The acoustic features contained 2 values for modelling the
periodic excitation (continuous F0 and voicing probability), 25
values for aperiodic excitation (Bark-scale band aperiodicity),
and 60 values for modelling the filter. First and second order
derivatives of all these features were also modelled, for a total
output vector size of 261.

3.5. DNN synthesis

In practice, the synthesis procedure works as follows:

1. The Idlak front-end turns an input text into “full labels”,

a rich phonetic and contextual representation of it.
2. The full labels are transformed into an input suitable for

the DNN by mapping all features to numerical values.
3. The durations within each phone and within each HMM

state are predicted using the Duration model DNN.
4. The input to the Acoustic model DNN is generated by

creating input label frames for each acoustic frames de-
sired, i.e. input labels for each HMM states are dupli-
cated as needed to match the predicted durations. The
quantized positions within the phone and the HMM
states are appended to the input labels.

5. The raw acoustic features and their derivatives are pre-
dicted using the Acoustic model DNN.

6. The acoustic features trajectories are smoothed using the
MLPG algorithm.

7. An excitation signal is built using the voicing and band
aperiodicity information.

During synthesis, the “full” labels generated on input text
by the Idlak front-end are converted to numerical values, then
output durations are calculated by forward propagation in the
DM-DNN. These values are then post-processed for consis-
tency, so that the sum of the states durations within a given
phone is equal to the phone duration.

By combining input labels and durations together, we can
then generate valid input for the acoustic model DNN. The full
labels with state and phone duration appended are oversampled
as described in the previous sub-section, and then forward prop-
agated in the AM-DNN.

This generates sequences of acoustic features with their
derivatives; these sequences are post-processed using the
MLPG algorithm to generate a smooth sequence of acoustic fea-
tures. These features are then fed to a mixed excitation MLSA
synthesizer [8] to generate the audio output.

The analysis and synthesis tools used have been integrated
to Idlak.

4. Experiment
For a fair comparison to the HTS-demo system, we used the
same audio database for both systems: the CMU ARCTIC
database speaker SLT. The training set consisted of 1132 au-
dio files, encoded in mono PCM wave format, with a sampling
rate of 48kHz (upsampled from 32kHz), totalling 47:01 minutes
once start and end silences had been trimmed.

HTS-demo Tangle DNN
Filter MCEP ord. 60 MCEP ord. 60

Periodic exc. Discontinuous Continuous
Aperiodic exc. None Band aperiod. (ord. 25)

Table 1: Acoustic parametrisation.

The tools supplied with Idlak to build an HTS-demo with
the Idlak front-end were used as detailed in [7], followed by
synthesis of the beginning of Lewis Carroll’s “Alice’s Adven-
tures in Wonderland” using HTS engine. Note that apart from
the front-end used to generate the labels, this setup is strictly
equivalent to the default settings of HTS-demo. Note also that
training the HTS models requires the proprietary HTK toolkit,
which requires registration, but the synthesis procedure can be
performed with the hts engine tool, which is distributed as
free software.

The acoustic parametrisation used for both Tangle and
HTS-demo is summarised in Table 1. The MCEP coeffi-
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cients were extracted in both cases using SPTK MCEP ex-
traction tool with α = 0.55. The periodic excitation
was extracted using respectively SPTK’s pitch and Kaldi’s
compute-kaldi-pitch-feats, and the aperiodic energy
was extracted using Idlak’s compute-aperiodic-feats.

Note that the main purpose of this evaluation is to compare
open source parametric synthesis systems that can be used for
any purpose (including commercial use), therefore the propri-
etary vocoder STRAIGHT was not used to build the HTS-demo
voice.

For reference purposes, a unit selection voice built by a pro-
prietary system and a commercial grade HTS voice were pro-
vided by CereProc Ltd, created on the same audio database.

As the speech database is very small, the unit selection
voice was not expected to perform significantly better than the
parametric systems [15].

5. Evaluation
15 expert listeners completed a MUSHRA-like preference
test [16] on 12 output phrases selected to cover different phrase
lengths, where the listeners were tasked in rating between 0 and
100 the naturalness of the outputs generated by each of the 4
systems. Note that the test had neither reference nor anchor, as
there are no original recordings of these samples by the target
speaker, and none of the system was expected to be consistently
better or worse than all the others.

For statistical analysis, opinion scores were averaged across
subjects to produce an average score for each phrase3. A
repeated-measures ANOVA was carried out by phrase, with
four conditions: HTS-demo, HTS commercial, Idlak Tangle,
Unit Selection. Results showed a significant difference between
groups (F (3, 33) = 29.821, p < 0.001), pairwise comparison
of the means using the least significant difference (LSD) pro-
cedure with Bonferroni correction showed a significant differ-
ence (p < 0.025) between all means except between the com-
mercial HTS system and Idlak Tangle. The unit selection sys-
tem performed best but with a wider variance, and Idlak Tangle
DNN system consistently outperformed the HTS-demo base-
line. However it was neither better nor worse than the propri-
etary HMM system.

6. Discussion
These example voices were built from the freely available ARC-
TIC SLT voice. With 47 minutes of data this is a small corpus
for TTS voice building by today’s standards. Given the small
size of the database the unit selection system performed surpris-
ingly well. Results in Blizzard [15] challenges have generally
shown unit selection voices to be below parametric quality for
databases on this size.

Previous work on DNN approaches to synthesis have typi-
cally used larger databases (e.g. Zen et al. [13] 30 hours, Wu
and King 2400 utterances). The results here show that with
the right architecture, a DNN solution can also outperform, or
match, an HMM system with a small corpora. This is especially
important for less resourced languages where the expense of
recording many hours of data can be a barrier to development.

Readers are encouraged to listen to the samples at
http://homepages.inf.ed.ac.uk/matthewa/

3By assuming the discrete opinion scores are independent and iden-
tically distributed samples, we are able to use the central limit theorem
to regard the means as being drawn from an approximately Gaussian
distribution [17].
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Figure 3: Mean opinion score of the four systems: 1. with Idlak
Tangle, 2. with HTS-demo Baseline, 3. with commercial HTS
style system, 4. with commercial Unit Selection system. Error
bars show standard error. All means except for DNN and com-
mercial HTS are significantly different (p < 0.025).

interspeech2016DNN to gauge the quality of both the
HMM baseline and the Tangle DNN system. The HTS Demo
output does not use mixed excitation. Within HTS-based
systems, mixed excitation is typically driven with band aperi-
odic energy parameters produced using the restricted license
STRAIGHT [11] system. Hence the lack of mixed excitation
in the HTS-demo output which leads to a strong sense of audio
buzz in voiced regions. An important contribution from this
work is a open source method of determining aperiodic band
energy for use in more freely licensed systems.

The voice quality produced by Tangle is not buzzy, but does
exhibit the dull and muffled quality associated with early HMM
systems which did not use global variance to increase the vari-
ance in trajectory modelling. In this early system no attempt has
been made to use global variance or variance scaling to increase
variability of the speech output. Furthermore, the vocoder used
does not implement phase randomisation. Future work intends
to improve this part of the released vocoder.

7. Conclusions
The DNN Tangle system presented here is using a simple, open
framework. Compared to the HTS-based system, the architec-
ture and the licensing situation is simple and allows liberal use
of the system within both commercial and academic environ-
ments. The performance of Tangle is significantly better than
the baseline HTS-demo parametric system. Tangle is to our
knowledge the first DNN-based parametric synthesis system
with no usage restriction, however this is by no means the cur-
rent state of the art. We look forward to other research groups
comparing Tangle to their own systems and contributing to the
Idlak Tangle open source project.
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