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Abstract
Fusion is a common approach to improving the performance of
speaker recognition systems. Multiple systems using different
data, features or algorithms tend to bring complementary con-
tributions to the final decisions being made. It is known that
factors such as native language or accent contribute to speaker
identity. In this paper, we explore inter-task fusion approaches
to incorporating side information from accent and language
identification systems to improve the performance of a speaker
verification system. We explore both score level and model
level approaches, linear logistic regression and linear discrim-
inant analysis respectively, reporting significant gains on ac-
cented and multi-lingual data sets of the NIST Speaker Recog-
nition Evaluation 2008 data. Equal error rate and expected rank
metrics are reported for speaker verification and speaker identi-
fication tasks.
Index Terms: speaker recognition, inter-task, fusion, speaker,
accent, language

1. Introduction
In the last decade, speaker recognition system have progres-
sively improved their performance under more and more chal-
lenging scenarios. A large number of approaches to speaker
recognition have been proposed such as MAP-adapted Gaus-
sian Mixture Models (GMM) [1], Gaussian mean supervec-
tors [2], maximum-likelihood linear regression coefficients [3],
Joint Factor Analysis [4], i-vectors [5] with Probabilistic Linear
Discriminant Analysis [6], obtaining lower and lower error rates
in more and more challenging conditions. Still, system fusion
remains a major source of performance improvement that con-
sistently provides gains over its individual subsystems. Indeed,
fusion has become a widespread practice due to its simplicity
and large improvements obtained, as reported in NIST Speaker
Recognition Evaluation (SRE) campaigns [7, 8].

Fusion of speaker recognition systems has been approached
using diverse techniques, basically combining features, models
or scores. Fusing scores is now ubiquitous for the simplicity,
speed and performance improvements obtained. Scores from
multiple speaker recognition systems have been fused using
weighted average [9, 10] with logistic linear regression having
been used for obtaining calibrated likelihood ratios while esti-
mating the optimal fusion weights [11]. Fusion addressing high
and low level information have also been explored, with most
relevant work integrating high-level and low-level speaker in-
formation into a speaker recognition system [12, 13, 14]. All
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these approaches combine systems aimed at modeling and rec-
ognizing speakers, what we name intra-task system fusion. On
the other side, inter-task fusion for speaker recognition, that is
fusing systems performing speaker recognition together with
systems addressing other tasks such as native accent recogni-
tion or language recognition has been barely addressed in the
past. The most relevant work on including side information into
a speaker recognition system can be found in [15], where a neu-
ral network is used to combine speaker recognition scores and
duration, channel type and SNR features.

The main challenge in combining speaker and side infor-
mation is that the latter does not provide information about the
speaker in a direct usable form. On the other side, it is well
known that characteristics such as native language are related
to speaker identity. In this paper, we explore two approaches
to inter-task fusion for speaker recognition tasks. Score-level
and a model-level techniques combining speaker information
together with accent and language information are proposed.
The rationale behind this form of fusion is that accent and lan-
guage information can effectively bias the evidence of speech
data being uttered by a given speaker.

The paper is organized as follows. Section 2 motivates
and discusses the proposed fusion schemes. In Section 3, the
speaker verification and accent and language identification sys-
tems are described. Section 4 describes the experiments and
gives results for the presented fusion methods. Section 5 gives
some conclusions on this study.

2. Inter-task Fusion

Speaker recognition systems typically resort to fusing multiple
systems to further improve their performance. While it is com-
mon to fuse systems developed for speaker recognition tasks,
fusion with systems developed for other tasks has not yet been
explored. In this paper, we define inter-task fusion as the fusion
of systems targetting the recognition of speakers and systems
targetting the recognition of other modalities such as accent and
language.

While spoken accent and language are intuitively related to
speaker identity, e.g. native language dominating the accent in
other spoken languages, how these should interact with genuine
speaker information is not straightforward. Without any other
cue, it seems just wrong, for instance, to increase the evidence
of a speaker speaking based on non-speaker cues.

In this paper, we explore two distinct approaches to inter-
task fusion, namely score fusion and model level fusion. These
are described in the following two sections.
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2.1. Score-level Fusion

Score level fusion is grounded on fusion techniques developed
for speaker verification such as linear logistic regression (LLR)
[11]. In this framework, fused scores sf are obtained for N
systems as

sf = b+

N∑
i=1

wisi, (1)

where positive scores favor the same-speaker hypothesis, Htar

and negative scores favor the different-speaker hypothesis
Hnon. Besides LLR increasing the speaker discrimination of
the fused scores, the technique also calibrates such scores such
that

sf = log
p(sf |Htar)

p(sf |Hnon)
. (2)

In the proposed fusion approach, rather than scores from
several speaker verification systems being fused, side informa-
tion scores are used from accent or language identification sys-
tems. However, there is no reason to believe that the direct lin-
ear combination of scores from non-speaker modalities, say ac-
cent identification scores, can bias speaker scores in a meaning-
ful way for speaker verification. Indeed, these are meaningful
for a non-speaker oriented task and they should ideally behave
as noise for a speaker recognition task.

In this work, we assume that speaker verification scores
are the main source for making speaker verification decisions,
while accent or language identification scores act as side in-
formation scores. These are assumed to be available for all
speech segments in a speech database. Prior accent probabil-
ities for each enrolled/target speaker are assumed to be known,
e.g. estimated from multiple enrolment utterances from ground
truth data. Accent posterior probabilities are estimated using
an accent identification system for the test segments. This fits
a speaker identification scenario where a test utterance is to be
compared to many speakers in a database that has been enriched
with accent metadata.

While increasing speaker evidence based on non-speaker
information seems like a dangerous practice, the opposite ap-
pears as intuitive and meaningful. The rationale is simple:
non-matching enrolment and test accents are indicative of a
non-target speaker verification score. We understand this to
be a hard-decision filtering approach to inter-task fusion that
is straightforward to implement by setting an extreme nega-
tive fused score in case of accent mismatch. In practice, ac-
cent and language identification systems make errors that prop-
agate into the fused system decisions. An approach perform-
ing soft-filtering, e.g. slightly decreasing speaker verification
scores based on accent/language mismatch, may be better suited
for a real-world application. The latter is adopted in this work.

Fig. 1 shows two block diagrams for soft-filtering score fu-
sion using two types of side information scores, focusing on the
accent modality. Fig. 1(a) uses binary accent mismatch values
as scores while Fig. 1(b) uses accent mismatch values in the
range [0,1], namely the product of enrollment and test accent
probabilities as scores. The soft filtering is performed by opti-
mizing the fusion weights that minimize Cllr cost function [16]
while calibrating the scores. In both schemes, side information
scores are zero when enroll and test accents are the same. This
prevents the fusion system from increasing the speaker verifi-
cation scores based on non-speaker information. Any perfor-
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Figure 1: Logistic Linear Regression (LLR) binary and proba-
bilistic approaches to fusion of speaker verification scores and
accent side information. ae and at are the known most prob-
able accents for the enrolled speaker and test utterance respec-
tively: (a) Fusion with a binary indicator of accent mismatch.
(b) Given accent mismatch between enrolment and test, fusion
with the product of accent probability for the enrolled speaker,
p(ae|s), times the posterior probability for the test, p(at|x).

mance improvement arises from scores for which accents are
mismatched.

The accent identification system is assumed to output a
likelihood score p(x|a) for each accent a being considered.
Such scores are transformed into posterior probabilities as
p(a|x) = p(x|a)p(a)∑

a′ p(x|a′)p(a′) . The maximum a posteriori ac-
cent for a given test segment t is taken for fusion according
to at = argmaxa p(a|x). For an enrolled speaker s the most
probable accent is taken according to ae = argmaxa p(a|s)

An analogous approach to speaker-accent score level fusion
is followed for language side information, just by replacing ac-
cent by language, as p(x|a) by p(x|l) and p(a|x) by p(l|x),
where l is any of the languages considered in the experiments.

2.2. Model-level Fusion

In this work, i-vector based systems are used for speaker ver-
ification, accent identification and language identification sys-
tems. These systems purposely share the same spectral enve-
lope features, the same Universal Background Model (UBM)
and T matrix for i-vector extraction. I-vectors are post-
processed using Linear Discriminant Analysis (LDA), length
normalization and finally scored using Probabilistic Linear
Discriminant Analysis (PLDA). This architecture is shown in
Fig. 3. Systems developed for different tasks only differ in the
LDA and PLDA back-end, which are trained using the speaker,
accent and language labels for speaker verification, accent iden-
tification and language identification tasks, respectively. The
dimensions of the projected i-vectors may differ as well, espe-
cially for LDA.

The LDA and PLDA frameworks are able to project the i-
vector space onto speaker, accent and language discriminative
subspaces while still resulting in high performance systems. In
this work, we propose to use the LDA framework to perform
i-vector fusion as well. To fuse the speaker verification and ac-
cent identification systems, i-vectors are projected with LDA
models trained specifically for speaker and accent discrimina-
tion. The projected vectors are concatenated and used to train a
conventional speaker verification back-end with LDA followed
by PLDA with only speaker labels (that is, accent labels is dis-
carded). The concatenation of heterogeneous i-vectors com-
plements the speaker models with accent specific information.
This scheme is shown in Fig. 2. The same procedure is applied
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Figure 2: Fusion of speaker i-vectors wspk and accent i-vectors
wacc via LDA prior to PLDA scoring.

to fuse language information into speaker verification systems.
In this case, the accent LDA model is simply replaced by the
language LDA model.

Such an approach to fusion has several advantages. First, it
does not depend on hard decisions being made, thus preventing
error propagation to the fused scores. Speaker, accent and lan-
guage information is represented as the continuous components
of i-vectors, where fusion is performed. A second advantage
for LDA fusion is that it is fully data driven. In principle, this
compares favorably with the score fusion approach relying on
matching side information such as accent or language. The lat-
ter, although reasonable, are indeed inflexible assumptions.

3. Experimental Setup
To evaluate the approaches to inter-task fusion described above
for accent and language side information, several systems are
required: a speaker verification system, an accent identification
system and a language identification system. These three sys-
tems have been developed using the same i-vector framework,
shown in Fig. 3, using LDA for post-processing and PLDA
for scoring. The LDA and PLDA modules are trained using
speaker, accent or language labels respectively to target the dif-
ferent tasks.

Feature vectors consist of 19 Mel-Frequency Cepstral Co-
efficients extracted every 10ms over a 25ms sliding window and
post-processed using feature warping over a 3s long sliding win-
dow. A 2048 Gaussian component UBM was trained on the
Fisher female data using maximum-likelihood estimation. The
same data was used to train the T matrix for i-vector estimation,
extracting i-vectors of 400 dimensions.

For the speaker verification LDA+PLDA back-end, NIST
SRE’04, SRE’05, SRE’06 and Fisher female data were used for
training. For the accent identification back-end, only utterances
in English language with native speakers of English, Chinese,
Hindi, Russian and Korean were used from the same data set.
For the language back-end, only utterances in English, Chinese,
Hindi, Russian and Korean languages were used from the same
data set plus NIST LRE’05 and LRE’07, plus the Callfriend
data set. Accents and languages were unevenly represented in
the training data with English and Chinese being over repre-
sented when compared to scarce data for Hindi and Korean.
Prior to fusion, the speaker i-vector dimension was unchanged
and while the accent and language i-vector dimensions were re-
duced from 400 down to 4. To train the LDA after concatenating
speaker i-vectors and accent/language i-vectors as the case may
be, we discarded data for which there were no speaker labels.

The performance of these systems was evaluated on the
NIST SRE’08 condition 6 data, consisiting of multi-language
data for the 5 languages above, and condition 7 data, consisting

LDA PLDA
I-vector

Extraction

Feature

Extraction

Figure 3: I-vector system using PLDA scoring. The LDA and
PLDA modules are trained to discriminate labels defined by the
task, i.e. speaker, accent or language labels.

of accented English data spoken by native speakers of the same
5 languages. To evaluate the performance of the fusion methods
of Section 2 on both speaker verification and speaker identifi-
cation tasks, accented and multi-language trial lists were gen-
erated by scoring each target speaker against 1 target and 300
randomly chosen non-target utterances, for a total of 150’000
and 250’000 trials used for accented and multi-language evalu-
ation respectively.

Table 1 shows the EER of the baseline verification system
evaluated on accented English (c7) and multi-language speech
data (c6). Accent and language identification accuracies are
also given for the respective data sets. From these figures, it
seems that accent identification is a tougher task compared to
language recognition. This makes sense intuitively as accent
identification deals with intra-language variation whereas lan-
guage identification deals with inter-language variation. How-
ever, it must be emphasized that accented English data was
rather scarce for native speakers of Hindi and Korean languages.

System SRE’08 c7 SRE’08 c6

Speaker Verification 1.87% EER 1.34% EER
Accent Identification 87.36% Acc. -
Language Identificaiton - 94.63% Acc.

Table 1: Baseline speaker verification (in EER), and accent and
language identification (identification accuracy) performances.

For LLR fusion, the Bosaris toolkit [17] was used to opti-
mize the fusion parameters. The Kaldi toolkit [18] was used for
speaker verification, accent identification and language identi-
fication system development, including LDA fusion and PLDA
scoring.

4. Experiments
A preliminary set of experiments were run to assess the speaker
discriminative power of accent and language i-vectors, obtained
after projection onto the PLDA inter-accent and inter-language
matrices. Table 2 shows EER for systems using accent and
language i-vectors on the baseine speaker verification system.
EER for accent i-vectors were 14 times worse than for speaker
i-vectors, 25 times worse for language i-vectors. These num-
bers suggest an inverse relation w.r.t. the accent and language
identification accuracy of systems using such i-vectors. The dis-
crimination amongst speakers is deemed residual in both cases.

A series of experiments were run to assess different meth-
ods of including accent information in a speaker verification
system on the accented English data of the SRE’08 condition
7. The Equal Error Rate (EER) of the systems are compared
for speaker verification tasks. To compare speaker identifica-
tion systems we define a metric called the Expected Rank (ER),
given by E[r] =

∑
r p(r)r, where r is the number of speakers
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Table 2: Evaluation of accent and language i-vectors on ac-
cented (c7) and multi-language (c6) speaker verification tasks.

System SRE’08 Cond. EER (%)

Speaker i-vectors c7 1.87
Accent i-vectors c7 26.70

Speaker i-vectors c6 1.34
Language i-vectors c6 33.67

retrieved and p(r) denotes the probability that the target speaker
appears in the top r matches among the enrolled speakers for a
test audio. The ER of a system indicates the average rank of the
target speaker over a large number of test cases when the system
returns the top R speakers closest to the test audio. This metric
is defined based on the Mean of Average Precision (MAP) often
used in Information Retrieval (IR) systems [19]. Note that ER
values are non-negative and can also be less than 1 based on the
probability distribution of r.

Table 3 shows results for logistic linear regression (LLR)
and LDA fusion methods as described in Section 2 for speaker
and accent fusion. For the baseline non-fused system, an abso-
lute EER of 1.87% and an ER of 1.96 were obtained, meaning
target speakers are expected to appear as second match in the
identification task.

An oracle experiment was run to assess the potential of a fil-
tering approach to fusion. In the Filter Oracle system, speaker
verification scores were given an extreme negative score if the
ground truth target and test accents were different. As shown
in Table 3, 5% (1.87% to 1.77%) and 18% (1.96 to 1.60) maxi-
mum relative improvements in EER and ER can be obtained us-
ing such filtering approach. Assuming no accent ground truth is
available for test utterances, we use the developed accent identi-
fication system, obtaining 87.36% identification accuracy, to es-
timate accents. When the maximum-a-posteriori accent is used
for each test utterance, EER can decrease from 1.87% to 1.80%
with LLR based score fusion, relatively close to the oracle EER
of 1.77%. Both LLR Binary and LLR Prob. approaches, us-
ing either binary values or the product of target and test accent
probabilities as fusion scores, yield the same results. Regard-
ing ER, LLR fusion achives 7% relative improvement (1.97 to
1.83), but remains far from 1.60, obtained using the ground truth
accent information.

LDA fusion, shown in the last row of Table 3, achieves
1.80% EER, the same as the score fusion methods above. ER is
the smallest of all methods, obtaining a 37% relative decrease
from the baseline, from 1.97 to 1.23.

According to these experiments, significant improvements
can be achieved using accent information for speaker verifica-
tion, and especially for a speaker identification task using LDA
fusion, that does not make any assumptions or require any deci-
sions to be made. Both methods reach a minimum EER which
is close to that obtained using the ground truth accent informa-
tion. This suggests an upper bound on the EER improvements
obtained by using accent information, although more effective
fusion methods may overcome the limits observed in this work.

A second set of experiments were run for language and
speaker fusion on the multi-language trials of the SRE’08 con-
dition 6. From Table 4, the absolute EER for the baseline is
1.34% considerably lower than the 1.87% EER obtained for the
multi-accent trials of condition 7.

Table 3: Fusion of a speaker verification system with an accent
identification system. Equal Error Rate and expected rank for
speaker verification and identification tasks are shown for sev-
eral fusion approaches.

System EER (%) ER

No fusion 1.87 1.97

Filter Oracle 1.77 1.60
LLR Binary 1.80 1.83
LLR Prob. 1.80 1.81

LDA 1.80 1.23

Regarding score fusion, the Filter Oracle experiment for
the language factor shows minimal EER improvements over the
baseline. We believe this is due to the fact that language is not
an identity determining factor as accent may be. Indeed, many
people can speak multiple languages, and not speaking the en-
rolled languages is less constraining than not speaking a certain
accent during enrollment, which translates in fusion affecting
very few scores . Being inspired in filtering, LLR fusion shows
similar trends, with minor improvements in both EER and ER
and even some loss for the LLR Prob. system.

LDA fusing speaker and language i-vectors obtains gains
over 8% EER in relative terms, from 1.34% to 1.23%, over the
baseline. In this case, a fully data driven approach to fusion not
relying on language identification hard decisions is definitely
advantageous. Minor improvements in ER are observed as well.

Table 4: Fusion of a speaker verification system with a language
identification system. Equal Error Rate and expected rank for
speaker verification and identification tasks are shown for sev-
eral fusion approaches.

System EER (%) ER

No fusion 1.34 0.64

Filter Oracle 1.33 1.64
LLR Binary 1.33 0.65
LLR Prob. 1.39 0.66

LDA 1.23 0.63

5. Conclusion
In this paper we explored several approaches to score level
and model level fusion of speaker and non-speaker informa-
tion, namely accent and language, to improve speaker verifi-
cation and identification performance. Both score and model
level approaches provided improvements in both equal error
rate and expected rank. Score level fusion, being based on fil-
tering and relying on accent and language identification deci-
sions, obtained small improvements for language fusion. Since
a speaker can speak several languages, language mismatch is
not a decisive factor to decrease the speaker scores, at least not
as decisive as accent. The proposed i-vector fusion based on a
data-driven approach such as linear discriminant analysis out-
performed score level fusion in most cases, and especially for
language-speaker fusion.
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Van Leeuwen, Pavel Matě, Petr Schwarz, and Albert Strasheim,
“Fusion of heterogeneous speaker recognition systems in the stbu
submission for the nist speaker recognition evaluation 2006,”
Audio, Speech, and Language Processing, IEEE Transactions on,
vol. 15, no. 7, pp. 2072–2084, 2007.

[12] Douglas Reynolds, Walter Andrews, Joseph Campbell, Jiri
Navratil, Barbara Peskin, Andrea Adami, Qin Jin, Dalibor
Klusacek, Joy Abramson, Radu Mihaescu, et al., “The super-
sid project: Exploiting high-level information for high-accuracy
speaker recognition,” in Proc. IEEE ICASSP, 2003, vol. 4, pp.
IV–784.

[13] Sachin S Kajarekar, Nicolas Scheffer, Martin Graciarena, Eliza-
beth Shriberg, Andreas Stolcke, Luciana Ferrer, and Tobias Bock-
let, “The sri nist 2008 speaker recognition evaluation system,” in
Proc. IEEE ICASSP, 2009, pp. 4205–4208.

[14] K Murty and Bayya Yegnanarayana, “Combining evidence from
residual phase and mfcc features for speaker recognition,” Signal
Processing Letters, IEEE, vol. 13, no. 1, pp. 52–55, 2006.

[15] William M Campbell, Douglas A Reynolds, Joseph P Campbell,
and Kevin Brady, “Estimating and evaluating confidence for
forensic speaker recognition.,” in Proc. IEEE ICASSP, 2005, pp.
717–720.
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