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1 Sharif University of Technology, Tehran, Iran
2 Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Czech Republic

zeinali@ce.sharif.edu, sameti@sharif.edu, nmaghsoodi@ce.sharif.edu

{burget, cernocky, matejkap}@fit.vutbr.cz

Abstract
Recently, a new data collection was initiated within the RedDots
project in order to evaluate text-dependent and text-prompted
speaker recognition technology on data from a wider speaker
population and with more realistic noise, channel and phonetic
variability. This paper analyses our systems built for RedDots
challenge – the effort to collect and compare the initial re-
sults on this new evaluation data set obtained at different sites.
We use our recently introduced HMM based i-vector approach,
where, instead of the traditional GMM, a set of phone specific
HMMs is used to collect the sufficient statistics for i-vector
extraction. Our systems are trained in a completely phrase-
independent way on the data from RSR2015 and Libri speech
databases. We compare systems making use of standard cep-
stral features and their combination with neural network based
bottle-neck features. The best results are obtained with a score-
level fusion of such systems.

Index Terms: text-dependent speaker verification, i-vector,
HMM, RedDots challenge

1. Introduction
Speaker verification (SV) is one of challenging areas of speech
processing. Historically, text-independent SV has received
more attention due to the regular organization of NIST chal-
lenges and available of standard data sets. Recently, the R&D
in text-dependent SV has gained momentum, and led also to in-
troduction of several standard datasets. RedDots project is one
these efforts, where a new data was collected in order to evalu-
ate text-dependent and text-prompted speaker recognition tech-
nology on utterances from a wider speaker population and with
more realistic noise, channel and phonetic variability. Although
not yet completed, the available amount of data already col-
lected was enough to organize a challenge [1] setting the Red-
Dots data as a new text-dependent SV benchmark.

Several methods have been proposed for text-dependent SV,
that can be grouped into two categories. The first one includes
traditional modeling-scoring methods such as Gaussian Mixture
Model–Universal Background Model (GMM-UBM) and Hid-
den Markov Model–UBM (HMM-UBM) directly producing
likelihoods, with new variants mainly elaborating on likelihood
ratio scoring [2, 3, 4, 5]. In the second category, new trends
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in the text-independent SV are ported to the text-dependent
case: using mean super-vector for speaker representation and
SVM for scoring [6, 7, 8, 9], Joint Factor Analysis with various
back-ends [10, 11, 12, 13], i-vector representation with PLDA
[14, 15] or Cosine Distance scoring [16, 17], and Gaussian pro-
cesses [18]. Recently, Deep Neural Network (DNN) have also
made it to text-dependent SV [19, 20].

Usually, GMM is used to align frames to Gaussian compo-
nents when collecting the sufficient statistics for i-vector extrac-
tion. The nature of text-dependent speaker verification however
encouraged us to propose an HMM-based approach for per-
forming a better frame alignment. In [21], we proposed an i-
vector/HMM approach, where the Viterbi algorithm is used for
the frame alignment. In the first step of this method, a phoneme
recognizer is trained and then individual phoneme models are
concatenated to create a phrase-specific HMM model for each
phrase. These models are then used for extracting sufficient
statistics from utterances. It is worth mentioning that although
phrase-specific HMM models are used, finally a single, phrase-
independent i-vector extractor is trained for all phrases exactly
the same as the text-independent case. Experimental results on
RSR2015 data set [5] have shown that the performance of the
proposed HMM-based method is better than other methods es-
pecially for rejecting wrong phrase trials [21], where the phrase
in the test utterance does not match with the enrollment one.

It was proved that the Deep Neural Network (DNN) ap-
proaches have a better performance in several speech data min-
ing tasks. Matejka et al. [22] have shown that using bottle-neck
DNN features (BN) concatenated to other acoustic features out-
performed the DNN method for text-independent SV. In [23],
we succeeded in reproducing these results for text-dependent
task. BN features helped the i-vector/HMM based method,
again especially in rejecting the wrong phrase trials.

This paper analyses our systems built for RedDots chal-
lenge – the effort to collect and compare the initial results on
this new evaluation data set obtained at different sites. We de-
scribe our experiments on RedDots data with the i-vector/HMM
approach. Our systems are trained in a completely phrase-
independent way on the data from RSR2015 and Libri speech
databases. We compare systems making use of standard cep-
stral features and their combination with BN features. The best
results are obtained with a score-level fusion of such systems.

Our previous work on the i-vector/HMM based method [23]
focused on the case of Imposter-Correct non-target trials, where
an imposter speaker pronounces the correct phrase. In this pa-
per, we further evaluate the technique on different types of non-
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target trials. We show that the technique is especially effec-
tive in rejecting the target speakers pronouncing a wrong phrase
(Target-Wrong trial).

The rest of this paper is organized as follows: in Section 2,
the main parts of our system are described. Section 3 presents
the experimental setups and Section 4 the results. We conclude
in Section 5.

2. i-vector/HMM based approach
To describe our i-vector/HMM based approach, we start with
Baum-Welch formula [24]. Let X = {xt|t = 1, . . . , T} be
the feature vectors from a variable-length input utterance of
a specific phrase. Then, the zero and first order statistics for
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where C is the total number of mixture components, and γ
(c)
t

is the posterior (or occupation) probability of frame xt be-
ing generated by mixture component c. The tuple γt =

(γ
(1)
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(C)
t ) is usually referred to as frame alignment.

In our HMM-based method, a phoneme recognizer is first
trained with 3-state, GMM-based, mono-phone HMMs. This
recognizer is the same as in speech recognition. Let F be the
total number of mono-phones (i.e. 39), S = 3F be the number
of all states, G the number of Gaussian components per state,
and C = SG the number of all individual Gaussians, and let
(s, g) denote Gaussian component g in state s. Then, for each
phrase (based on the transcribed sequence of phonemes in that
phrase), a new phrase-specific HMM is constructed by concate-
nating the corresponding mono-phone HMMs. The Viterbi al-
gorithm is then used to obtain the alignment of the frames to
the HMM states, and within each state s, the GMM alignment

γ
(s,g)
t is computed for each frame t. We can now re-interpret

the pair (s, g) as one out of C Gaussians and we can substitute
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Note that in Eqs. (3) and (4), due to the typically short dura-
tion of phrases, not all phonemes are used in the phrase-specific
HMM. Therefore the alignment of frames to the Gaussian com-

ponents is often sparse and most of the γ
(s,g)
t values are zero.

When comparing this HMM structure with GMM, we
should note that it has two main advantages. The first one is
better localized frame alignment to Gaussian components —
posteriors of each frame are non-zero in exactly G components.
The second advantage is high chance of rejecting wrong phrase
trials; for these, the phoneme sequence of the input utterance
does not match with the phonemes of the pass-phrase. The
frame posteriors and consequently zero and first-order statistics
are wrong. In this case, the extracted i-vector is very different
from enrollment i-vectors and can be easily rejected.

3. Experimental setups
3.1. Data set

The current snapshot of RedDots used for this challenge con-
tains 62 speakers including 49 males and 13 females. 41 speak-
ers are used as target speakers (35 males and 6 females) and the
other ones are considered as unseen imposters. RedDots dataset
consists of four subsets: In Part-01, each speaker uttered 10
common phrases, so for this part, three types of non-target tri-
als can be considered: Imposter-Correct, Imposter-Wrong (i.e.
trials corresponding to an imposter speaker in the test utterance
pronouncing correct or wrong phase, respectively) and Target-
Wrong trials. We report results separately for tree conditions
corresponding to the three non-target trial types. All three con-
ditions share the same Target-Correct trials. The results are re-
ported in terms of Equal Error Rate (EER) and Normalized De-
tection Cost Function as defined for NIST SRE08 (NDCFmin

old )
and NIST SRE10 (NDCFmin

new).
In Part-02, each speaker pronounced 10 unique phrases and

in Part-03, two free-choice phrases were used. In Part-02 and
-03, there are no Imposter-Correct trials. The last part of this
data set (i.e. Part-04) is the combination of previous three parts.
For Part-04, there are two different tasks (i.e. text-dependent
and text-prompted). We dealt with the text-dependent task only.

For UBM and i-vector extractor training, the combination
of the RSR2015 dataset Part-1 [5] and 100 hours of Libri speech
[25] was used. The RSR2015 dataset comprises recordings
from 157 male and 143 female speakers each pronouncing 30
different phrases from TIMIT in 9 distinct sessions. The Train-
Clean-100 part of Libri speech includes 251 speakers (126
males and 125 females). Switchboard data was used to train
of DNN for extracting BN features.

3.2. Features

We have experimented with several different configurations for
extracting the standard cepstral features. For the experiments
reported in this paper, we have selected 60-dimensional PLP
and MFCC features, both extracted from 16 kHz signal us-
ing HTK [26] with a similar configuration: 25 ms Hamming-
windowed frames with 15 ms overlap. For each utterance, the
features are normalized using cepstral-mean and -variance nor-
malization after dropping the initial and final silence frames.

In addition to the cepstral features, 80-dimensional DNN
based stacked bottle-neck features are used [27, 22, 23]. Note
that these features are extracted from data down-sampled to
8 kHz as, at the time of running these experiments, the only BN
DNN available was trained on 8 kHz conversational telephone
Switchboard data. In the experiments presented in this paper,
we never use the BN alone. Instead, we concatenate BN fea-
tures and MFCC features to form 140-dimensional MFCC+BN
features. Such features proved to provide superior performance
in our former experiments [22, 23].

3.3. System configuration

HMM with 3 states and 8 Gaussian components for each of
39 mono-phones were used for the alignment (resulting in to-
tal number of 936 Gaussian components). All reported re-
sults are obtained with the i-vector/HMM based systems. The
400- and 600-dimensional i-vectors are extracted using gender-
dependent HMM-UBMs and i-vector extractors. Cosine dis-
tance is used to obtain speaker verification scores.

Due to the very short utterances with variable content, we
were not able to successfully apply any channel compensation.
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Table 1: Results on Part-01 males with MFCC features compar-
ing different approaches and i-vector dimensionalities.

Method Trial type EER [%] NDCFmin
old NDCFmin

new

Relevance
MAP/GMM

Imp-Corr 1.98 0.0848 0.2879
Tar-Wrg 4.01 0.1733 0.4960
Imp-Wrg 0.34 0.0135 0.0488

i-vector/GMM
(dim: 600)

Imp-Corr 2.07 0.0899 0.3105
Tar-Wrg 3.76 0.1762 0.4275
Imp-Wrg 0.43 0.0153 0.0435

i-vector/HMM
(dim: 400)

Imp-Corr 2.31 0.0893 0.2250
Tar-Wrg 1.30 0.0580 0.1423
Imp-Wrg 0.56 0.0121 0.0404

i-vector/HMM
(dim: 600)

Imp-Corr 1.88 0.0809 0.2271
Tar-Wrg 1.11 0.0338 0.0509
Imp-Wrg 0.46 0.0106 0.0228

We also tried different score normalization methods, but most
of them failed. Therefore, all reported results are without any
normalization. Note that in [21, 23], we used phrase-dependent
regularized WCCN and phrase-dependent S-Norm. We have
also shown there that if channel compensation and normaliza-
tion were trained on an independent dataset of different phrases
(i.e. similarly as in text-independent case), they failed. It seems
that in text-dependent SV, and especially with our HMM based
method, we cannot do any phrase independent normalization.
For score fusion, we used simple score averaging with equal
weights for each sub-system.

4. Results
4.1. Comparison to the traditional approaches

To justify our choice of the i-vector/HMM approach for the
RedDots challenge, we compare it to two simpler and more con-
ventional baseline methods. In Table 1, Relevance MAP/GMM
corresponds to the traditional approach based on Relevance
MAP adaptation of GMM-UBM (1024 components) and log-
likelihood ratio scoring [2], which is still the standard approach
to text-dependent speaker recognition. The second baseline sys-
tem i-vector/GMM is based on the standard i-vector approach
and the only difference from our proposed i-vector/HMM sys-
tem is the use of GMM-UBM (1024 components) rather than
HMM-UBM. As can be seen, the i-vector/HMM system out-
performs (or at least performs comparably to) the baselines for
all conditions. The improvement is especially significant for the
Target-Wrong condition, which shows that the approach is very
effective in verifying the correctness of the phrase.

In almost all cases (and especially for the wrong phrase con-
ditions), the performance of 600-dimensional i-vectors is better
than 400-dimensional ones. Therefore, we continue reporting
only the results with 600-dimensional i-vectors.

4.2. Feature comparison

In Table 2, we compare the performance of the systems making
use of the different features. We observe that, compared to the
cepstral features, the MFCC+BN features are much better in
rejecting wrong phrase trials. However, the price paid for it is
considerably worse performance on Imposter-Correct trials. In
order to show the cause of this behavior, the score distributions
of different trial types for MFCC and MFCC+BN are plotted in

Table 2: Results on Part-01 males comparing different features
for different trial types.

Features Trial type EER [%] NDCFmin
old NDCFmin

new

MFCC
Imp-Corr 1.88 0.0809 0.2271
Tar-Wrg 1.11 0.0338 0.0509
Imp-Wrg 0.46 0.0106 0.0228

PLP
Imp-Corr 2.13 0.0738 0.2339
Tar-Wrg 1.20 0.0373 0.0759
Imp-Wrg 0.49 0.0129 0.0327

MFCC+BN
Imp-Corr 2.92 0.1295 0.4246
Tar-Wrg 0.37 0.0081 0.0154
Imp-Wrg 0.22 0.0036 0.0059
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Figure 1: Score distribution of different trial types of male tri-
als for MFCC and MFCC concatenated to Bottle-Neck (i.e.
MFCC+BN). The vertical lines show the mean of normal dis-
tribution fitted to the scores.

Figure 1.

We can see that the distributions of correct phrase trials
(for both target and imposter speakers) move considerably to
the right (i.e. scores higher) in the case of MFCC+BN fea-
tures as compared to the cepstral features. This indicates that
i-vectors extracted from MFCC+BN features contain also sig-
nificant amount of information about phonetic content of the
phrases, which makes i-vectors extracted from the same phrase
more similar. This is understandable as the BN features were
trained capture information important for phone recognition.
As the distribution of correct phrase trials moves away from
the wrong phrase trials in the case of the MFCC+BN features,
it makes it easy to reject the wrong phrase trials. On the other
hand, the overlap between Target-Correct and Imposter-Correct
scores distributions slightly increases for the MFCC+BN fea-
tures, which results in a poorer performance for Imposter-
Correct condition. In order to take advantage of the excellent
performance of MFCC+BN features on wrong phrase trials and
better performance of cepstral features on Imposter-Correct tri-
als, we fuse scores of systems based on these different features.

Note that performance of the MFCC+BN features on Red-
Dots is contradicting our findings on the RSR2015 dataset [23].
On RSR2015, the performance of MFCC+BN was better than
MFCC also for Imposter-Correct condition. In our RSR2015
experiments, the data for training HMM-UBM and i-vector ex-
tractor contained the same phrase as the enrollment and test ut-
terances. However, this is not the case for most of the phrased
in RedDots. Therefore, we suspected that the BN features
might be sensitive to such mismatch between the training and
test data. To prove hypothesis, we concentrate on three out of
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Table 3: The final results for all 4 parts of the RedDots challenge (fusion of three systems with different features). The gray cells
correspond to the “unreliable” conditions, for which we make less than 30 errors of type I or II (See Doddington’s rule of 30 [28]).

Male Female

Part Non-target trial type EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

Part-01

Imposter-Correct 1.60 0.0615 0.2132 2.75 0.1156 0.1877

Target-Wrong 0.49 0.0105 0.0120 0.63 0.0174 0.0174

Imposter-Wrong 0.25 0.0039 0.0056 0.32 0.0111 0.0221

Part-02
Target-Wrong 0.34 0.0055 0.0219 0.17 0.0055 0.0069

Imposter-Wrong 0.28 0.0035 0.0038 0.17 0.0017 0.0017

Part-03
Target-Wrong 0.16 0.0016 0.0016 1.52 0.0152 0.0152

Imposter-Wrong 0.16 0.0016 0.0016 0.76 0.0076 0.0076

Part-04

Imposter-Correct 1.35 0.0542 0.1910 2.23 0.0899 0.1248

Target-Wrong 0.19 0.0033 0.0232 0.36 0.0085 0.0152

Imposter-Wrong 0.19 0.0022 0.0034 0.27 0.0073 0.0152
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Figure 2: Score distributions of two different phrase sets for cor-
rect male trials for MFCC and MFCC+BN. The vertical lines
show the means of normal distributions fitted to scores.

the ten phrases from Part-01 of RedDots that are common with
RSR2015 (as mentioned earlier, RSR2015 is used for training
in our RedDots experiments). In Figure 2, we plot correct tri-
als score distributions for two separate phrase sets: “Close”
with just the three common phrases, and “Open” with all other
phrases. It is clear that for MFCC+BN features, the target and
non-target scores distributions of the Close set are farther from
each other than for the Open set. This shows that we can expect
much better performance of the BN features when test phrases
are included in training data.

Another reason for the worse performance of MFCC+BN
features could be their higher dimensionality compared to
MFCCs (140 vs 60). However, any our attempt to reduce the
dimensionality of the MFCC+BN features only resulted if a fur-
ther performance degradation.

4.3. Final fusions

The final results were obtained from the fusion of three i-
vector/HMM based system, each making use one of the three
different features: MFCC, PLP and MFCC+BN. For score fu-
sion, we simply averaged the scores with the same weights. We
experimented with a trained logistic regression fusion, but its
performance was as good as the simple averaging. For four
parts of the RedDots challenge, the results are summarized in
Table 3. In this table, the gray cells show results that should be
taken with care — operating points are placed on very steep re-

gions of DET curves and a little change in the threshold change
them considerably.

Comparing Part-01 results in Table 3 and Table 2 shows that
the fusion often performs significantly better than any of the in-
dividual systems while it never performs significantly worse.
According to in Table 3, most of the wrong trials received low
scores, which, we believe, is due to using our HMM method and
BN features: when Viterbi force alignment is used for frame
alignment with different-phrase HMM, most of the frames are
assigned to incorrect Gaussian components, the calculated pos-
teriors are wrong and consequently this type of trials can be
easily rejected.

The results on Part-03 deserve a comment: In this part,
each speaker was free to select two pass-phrases. Unfortunately
some of the speakers used non-English words in the pass-phrase
and so we had to map non-English phonemes to the nearest En-
glish ones by hand.

5. Conclusions
This paper describes our system for the RedDots challenge data.
Our system builds on our i-vector/HMM based method for text-
dependent SV where a new HMM structure is used for UBM
modeling instead of traditional GMM. Generally, we have seen
that in text-dependent speaker verification, we cannot do any
channel compensation and score normalization as it is usual in
text-independent systems. This happens due to very short ut-
terances, where phonetic variation is dominant compared to the
speaker and channel variation and so the i-vectors of different
phrases have large distances from each other.

The investigation into features has shown that the perfor-
mance of the cepstral features is better than MFCC+BN ones
for imposter-correct trials, but in wrong trials, the performance
of BNs is much better. We have also confirmed that in the close
phrase-set task (i.e. when test phrases are in present the training
data) BN features work better compared to the open phrase-set
task. Our best result for the RedDots challenge was achieved
by fusing three systems based on different features in score do-
main.

Comparing 400- and 600-dimensional i-vectors showed
that larger i-vector is better for wrong trials and that the perfor-
mance does not change much for correct trials. This suggests
that larger i-vectors can better represent both the speaker and
the phrase.
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