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Abstract
Adaptation of Automatic Speech Recognition (ASR) systems to
a new domain (channel, speaker, topic, etc.) remains a signif-
icant challenge, as often, only a limited amount of target do-
main data for adaptation of Acoustic Models (AMs) is avail-
able. However, unlike GMMs, to date, there has not been an
established, efficient method for adapting current state-of-the-
art Convolutional Neural Network (CNN)-based AMs. In this
paper, we explore various training algorithms for domain adap-
tation of CNN based speech recognition systems with limited
acoustic training data resources. Our investigations illustrate
the following three main contributions. First, introducing a
weight decay based regularizer along with the standard cross
entropy criteria can significantly improve recognition perfor-
mances with as little as one hour of adaptation data. Second,
the observed gains can be improved further with the state-level
Minimum Bayes Risk (sMBR) based sequence training tech-
nique. In addition to supervised training with limited amounts
of data, we also study the effect of introducing unsupervised
data at both the initial cross-entropy and subsequent sequence
training stages. Our experiments show that unsupervised data
helps with cross-entropy and sequence training criteria. Third,
the effect of speaker diversity in the adaptation data is also
investigated where our experiments show that although there
can be large variance in final performance depending on the
speakers selected, regularization is required to obtain significant
gains. Overall, we demonstrate that with adaptation of neural
network based acoustic models, we can obtain performance im-
provements of up to 24.8% relative.
Index Terms: Domain adaptation, Weight decay, sequence train-
ing, CNN

1. Introduction
Adaptation of acoustic or language models to the speaker, chan-
nel or topic (we refer to this collectively as the domain of inter-
est) is a well known problem in speech recognition. Acoustic
Model (AM) adaptation has a long history of research and there
are well-established methods for adapting GMM-based AMs
such as, Maximum Likelihood Linear Regression (MLLR) [1]
or Maximum A Posteriori (MAP) adaptation [2] which can be
applied both to the model and the feature space. With the ad-
vent of neural network based acoustic models [3, 4, 5, 6, 7],
GMM-based AMs are no longer yield state-of-the-art perfor-
mance in ASR systems. However, adapting the various con-
figurations of neural network based acoustic models such as
feed-forward Deep Neural Nets (DNNs), Convolutional Neu-
ral Networks (CNNs), or Long Short Term Memory (LSTM)
networks, involves adapting a large number of parameters with

a small amount of adaptation data, and remains a subject of re-
search. Few approaches have been proposed in the literature. A
simple approach, referred to as fine-tuning [8, 9, 10] that works
quite well, includes an additional epoch of training some or all
layers of the network with the adaptation data alone. This ap-
proach has been so powerful, that it has been used successfully
to even adapt a multilingual neural network to the target lan-
guage of interest [11, 12, 13]. A second approach involves the
addition of another layer to perform a feature-space-like adap-
tation [14, 15, 16, 17, 18]. A third approach introduces a regu-
larizer to control the extent by which the weights move from the
baseline model [8, 9] when fine-tuned with the little adaptation
data. Alternatively, the features (i-vectors or speaker-adapted
features such as feature-space MLLR (fMLLR) have been used
to serve as the medium of adaptation [19, 20] when the base-
line acoustic model is speaker-dependent. An important factor
in all of these training schemes is the underlying criterion used
to train these networks, i.e,. Cross Entropy (CE) or the state-
level Minimum Bayes Risk (sMBR) criterion [21]

In this paper, we investigate the impact of the regularizer
when adapting different acoustic models, the impact of the train-
ing objective function, the impact of automatically produced la-
bels on adaptation, and the role of speaker diversity in the adap-
tation data. We also illustrate a method to obtain gains when
training with the sMBR criterion.

The main contributions of this paper are:

• First, we demonstrate the value of a regularizer (similar
to the one presented in [8, 9] when adapting with very
little, completely mismatched target domain data (See
Section 3).

• Second, we show that using the Cross-Entropy (CE) adapted
model as the basis of sMBR-based sequence training is
better than using sequence training as the starting point
for the CE adaptation step (See Section 5).

• Third, we demonstrate that while speaker diversity has
an impact on the adaptation performance, there is a net
improvement with the proposed approach regardless of
the speaker distributions (See Section 4)

• Finally, we show, that proposed approach works well in
an unsupervised training scenario (See Section 6).

The rest of this paper is organized as follows. The next
section 2 provides a description of the data and the baseline
systems used throughout this paper for adaptation. Section 3
presents the results from adaptation using the regularized ap-
proach using varied amounts of adaptation data using three dif-
ferent acoustic models. Section 4 studies the impact of speaker
diversity in the data selected for adaptation. Section 5 presents
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the application of sequence training to the adaptation task. Com-
parison between supervised and unsupervised adaptation using
the regularizer is presented in Section 6. The paper concludes
with a summary of this empirical study in Section 7.

2. Data and System Descriptions

2.1. Baseline systems

In this section, we describe the baseline models and the experi-
mental conditions as the basis for comparing various adaptation
methods from the next section. We use three baseline models.
One is a speaker-independent (SI) CNN AM which is trained
with 1,975 hours of telephony speech data by using the sMBR
criterion [22]. The CNNs operate on blocks of 11 consecutive
40-dimensional logmel frames augmented with first and second
derivatives with 9 × 9 convolution windows. The convolution
and pooling layer configuration is taken from [23]. The size of
parameters for the network is [243× 128, 1536× 256, 2048×
2048, 2048×2048, 2048×2048, 2048×2048, 2048×2048, 2048×
512, 512×9300]. A second baseline model is a speaker-adapted
(SA) i-vector DNN AM which is also trained with the same
1,975 hours by using the sMBR criterion [19]. Each frame is
represented by a feature vector of 13 perceptual linear predic-
tion (PLP) cepstral coefficients which are mean and variance
normalized per conversation side. Every 9 consecutive cep-
stral frames are spliced together and projected down to 40 di-
mensions using LDA. The LDA features are transformed with
one feature-space MLLR (fMLLR) transform per conversation
side at test time. 100-dimensional i-vectors extracted per con-
versation are concatenated and fed into DNN. A third baseline
system is the speaker-independent (SI), i-vector based system
which uses the afore-mentioned LDA features. All baseline sys-
tems are first trained with the cross-entropy criterion followed
by sequence training. The size of parameters for the network is
[(11× 40 + 100)× 2048, 2048× 2048, 2048× 2048, 2048×
512, 512 × 32000]. The vocabulary comprises of 250K words
and the language model is a 4-gram LM with 200M n-grams.

2.2. Adaptation and Evaluation Data

In this paper, the adaptation data is drawn from telephone con-
versations from an internal data base of customer support calls
recorded at various internal call centers. The data includes a
diverse set of accents and channel characteristics that vary dra-
matically depending on the location of the call center. The adap-
tation data consists of three subsets of call center recordings;
monaural recordings between agents and customers from Call
Center A (CC-A), stereo recordings of the agent and customer
from location B (CC-B) and their reference transcripts. These
subsets contain 21 hours, and two hours of audio each from
agents and customers, spanning a wide variety of accents. The
baseline models do not contain any data from these call-centers
and as such have not seen the channel, noise or speaker styles
present in this data, thus serving as a good test set for exploring
adaptation algorithms. The experiments reported in this paper,
include a varying amount of data from the three adaptation data
subsets, ranging from as little as 20 minutes to 25 hours, while
maintaining distribution of the three subsets. The evaluation
data comprises of a total of 6 hours of audio (63K words), and
also matches the distribution of the adaptation data sets. There
is no overlap of speakers between the adaptation and evaluation
corpora.

2.3. Performance of the baseline systems

Table 1: WERs of baseline systems on CC-A, Agent: CC-B ,
Customer: CC-B)

CC-A CC-Bagent CC-Bcust. Ave.
SI CNN 28.6 35.0 46.0 36.5
SI i-vec. DNN 30.9 29.5 42.0 34.1
SA i-vec. DNN 29.2 26.9 41.0 32.4

The Word Error Rates (WERs) of the two baseline systems
on the evaluation corpora are presented in Table 1. The out-of-
the-box i-vector based, speaker-adapted DNN system has better
performance on the average than a speaker-independent CNN
system. While no adaptation data is used here, the speaker-
adapted, i-vector based DNN system, inherently has an adapta-
tion component to it, as the statistics for the i-vector computa-
tion are derived from the evaluation corpora.

3. Supervised adaptation with varying
amounts of data

The adaptation algorithm used in this section, is similar to the
one proposed in [8]. This scheme resembles MAP adapta-
tion, with the adapted weight updates arrived at from using a
weighted combination of the updates from adaptation data and
the baseline model. Unlike the work in [8] where adaptation
was performed at a speaker level, in this work, the entire adap-
tation data is pooled and the algorithm is used as an overall
domain adaptation scheme, as given by Equation 1.

∆wt = −α∇wE(wt)− β(wt−1 −w0) (1)

where α is a learning rate, β is a regularization parameter, and
w0 is model parameters of the initial model. The network was
adapted using the cross-entropy training criterion and trained to
convergence after 20 epochs.
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Figure 1: WERs with various amounts of adaptation data

Figure 1 illustrates the behavior of the three systems when
adapted with varying amounts of data using the cross-entropy
training criterion. As expected, as the amount of adaptation
data is increased, all baseline systems provide improved perfor-
mance. With 25 hours of adaptation data, the speaker-independent
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CNN system outperforms all other systems albeit by a narrow
margin. However, with only one hour of adaptation data, there
is a lot more to be gained from adapting a speaker indepen-
dent CNN system (dotted blue line), 6.7% relative improve-
ment, than the speaker-independent i-vector DNN system (solid
grey line), which yields only 2.6% relative improvement. On
the other hand, the speaker-dependent (SD), i-vector DNN sys-
tem which has the best performance with no adaptation, gets
worse (solid blue line) when adapted with one hour of adapta-
tion data. This could be attributed to the fact that the feature
space transform estimation does not have sufficient statistics to
render the adaptation stable.

Next, we study the impact of using a regularizer. The regu-
larization algorithm implemented in this paper is in the form of
a weight-decay based adaptation scheme. It outperforms sim-
ple adaptation (fine-tuning) on all three very different baseline
systems. A different weight decay factor, that was empirically
determined to maximize the classification performance on held
out data, was used depending on the amount of adaptation data
available. For example, a decay factor of 0.01 was used for up
to 2 hours of adaptation data, 0.001 for 5 to 10 hours and 0.0001
for up to 25 hours. With increasing amounts of adaptation data,
the network parameters can be refined reliably, and this is illus-
trated by the weight assigned to the updates derived from the
adaptation data. The SI CNN system benefits the most with one
hour of adaptation, obtaining a 16% relative improvement when
using the regularizer (solid red line versus dotted blue line). In
contrast, the i-vector based, SI DNN system improves by 1.6%
relative (grey versus yellow line). The i-vector based SD DNN
system, now shows a very marginal gain of less than 1% rela-
tive over the baseline performance. This clearly illustrates the
importance of controlling the weight updates when very little
adaptation data is available. As the training data is increased
up to 25 hours, we can see that all models converge to within
2% relative performance of each other. However, in most real-
world applications, it is desirable to see the best performance
with as little as one hour of adaptation data. In such cases, it
appears the use of a speaker-independent system provides max-
imum flexibility, with the CNN models outperforming the DNN
models. Given that the best performance was obtained with an
SI CNN system, we chose to explore the sequence training anal-
ysis using the SI-CNN system1

4. Speaker diversity
In this section, we compare the performance of the weight de-
cay regularization scheme using a very limited amount of adap-
tation data, namely, 20 minutes selected from different speak-
ers. The adaptation data comprises of 10 minutes from CC-A
and 10 minutes from CC-B, each of which contains two speak-
ers. In order to study the impact of the diversity of speakers in
the adaptation data, we experimented with five different trials,
selecting 10 minutes from each location but a different set of
speakers each time. The results are tabulated in Table 2.

It can be observed that regardless of the distribution of speak-
ers in the adaptation corpora, regularization is needed to obtain
significant gains. Without regularization, adaptation can actu-
ally hurt performance, as we are trying to when very little adap-
tation data is available. This is not a surprising result as we are
using very little adaptation data to refine a large number of pa-

1Although, not presented in this paper, we have seen similar trends,
albeit much smaller improvements with the speaker dependent and in-
dependent i-vector based DNN systems.

Table 2: WERs with only 20 minutes and 4 speakers adaptation
data

CC-A CC-Bagent CC-Bcust. Ave.
Baseline CNN 28.6 35.0 46.0 36.5
Trial 1 31.5 29.0 45.9 35.5
Trial 1 (weight decay) 26.9 26.5 42.3 31.9
Trial 2 29.6 28.4 43.9 34.0
Trial 2 (weight decay) 27.2 26.9 42.1 32.1
Trial 3 29.8 26.3 43.5 33.2
Trial 3 (weight decay) 27.7 25.5 42.0 31.7
Trial 4 27.9 27.9 43.0 32.9
Trial 4 (weight decay) 26.8 26.5 42.1 31.8
Trial 5 28.3 31.4 46.2 35.3
Trial 5 (weight decay) 27.0 30.2 44.8 34.0

rameters in the network. Also, a rather large variance in the final
performance can be seen with WERs ranging between 31.9%
and 34.0%, depending on the speakers selected for adaptation.

5. Adaptation using sMBR sequence
training

Sequence training using the sMBR training criterion has shown
consistent improvements over training the network’s parame-
ters with the cross entropy criterion. In this section, we explore
the value of sequence training for adaptation. It is important
to note here that the baseline systems used in this paper are all
sequence trained. With MAP-like adaptation, some of the bene-
fits of sequence training using a discriminative criterion are lost
(smoothed out). In order to investigate if further improvements
can be obtained with sequence training, we used the baseline
system as the starting point, similar to Section 3. We first adapt
using the cross-entropy criterion, followed by sequence train-
ing with the sMBR criterion. Figure 2 illustrates this process
and the results are presented in Table 3. The SI CNN model
is adapted with different amounts of adaptation data, training to
covergence after 20 epochs. Subsequently, lattices are produced
using this system and the network is trained with the sMBR
training criterion, converging after 10 epochs through the adap-
tation data. Table 3 shows that sequence training provides con-
sistent gains for all amounts of adaptation data, with the final
adaptation performance with 25 hours of adaptation, exceeding
the result in Figure 1 by 5.6% relative.
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Table 5: WERs when 200 hours of unsupervised data and 2 hours of supervised data are available
CC-A CC-Bagent CC-Bcust. Ave.

Weight decay based CE adaptation (unsupervised 200h) + sMBR (supervised 2h) 25.8 22.8 40.8 29.8

Table 3: WERs of weight decay based adaptation (20 epochs)
+ sMBR sequence adaptation (10 epochs) with various amounts
of training data

CC-A CC-Bagent CC-Bcust. Ave.
Baseline SI CNN 28.6 35.0 46.0 36.5
1h (weight decay) 24.6 27.8 42.1 31.5
1h (+sMBR) 24.3 27.3 41.0 30.9
2h (weight decay) 25.1 27.1 43.2 31.8
2h (+sMBR) 24.1 26.4 41.5 30.7
5h (weight decay) 24.4 26.5 42.8 31.2
5h (+sMBR) 24.0 25.6 40.6 30.1
10h (weight decay) 24.2 25.8 42.3 30.8
10h (+sMBR) 23.6 24.8 41.2 29.9
25h (weight decay) 23.8 23.6 42.3 29.9
25h (+sMBR) 22.4 22.8 39.3 28.2

6. Unsupervised adaptation
In many real-world applications, acquiring data with reference
(manually annotated) transcripts for the target domain is im-
practical and expensive. Therefore, it is essential that unsuper-
vised adaptation algorithms achieve performance levels by un-
supervised adaptation. In this section, we compare supervised
and unsupervised adaptation using the approach presented in
Sections 3 and 5. For unsupervised domain adaptation, we
explore the use of up to an additional 200 hours of unlabeled
data. The transcripts for adaptation were automatically gener-
ated using the SI CNN baseline system. Table 4 presents the
WERs obtained by adapting the SI CNN system with varying
amounts of unsupervised data. The first three rows of this ta-
ble are a direct comparison with Table 3, i.e., the 2 hour and
25 hour adaptation data runs use the same data in both tables:
one uses the reference transcripts and the other uses the auto-
mated transcripts. While significant improvements can still be
obtained with the regularized unsupervised adaptation, the rela-
tive improvements are less than those obtained with supervised
adaptation. This result is in-line with what is normally reported
in the literature when using unlabeled data. For example, in-
creasing the adaptation data from 2 hours to 25 hours, results
in an improvement of 8% relative (WER reduction from 30.7%
to 28.2%) for the supervised case, while the unsupervised case
gains 4.3% relative (WER reduction from 32.8% to 31.4%).
When the unsupervised data is increased to 75 hours and 200
hours, further improvements can be seen. However, with 200
hours of unsupervised data, the best WER obtained is 30.3%.
In contrast, the best WER obtained with 25 hours of supervised
data is 28.2%. Using just the unsupervised data allows us to ap-
proach the performance of a system adapted with only 5 hours
of supervised data. Next, we explored the impact of replacing
just 2 hours from the 200 hours of unsupervised data with refer-
ence transcripts. These results are shown in Table 5. The WER
from this adapted system is now 29.8% which is closer to the
performance of a system adapted with 10 hours of supervised
data. This clearly indicates that even a small amount of super-
vised data, can be very impactful despite having 20 times more
unsupervised data to adapt on.
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Figure 3: WERs of unsupervised adaptation with various
amounts of training data

Table 4: WERs of unsupervised adaptation with various
amounts of training data

CC-A CC-Bagent CC-Bcust. Ave.
Baseline SI CNN 28.6 35.0 46.0 36.5
2h (weight decay) 26.7 28.7 43.0 32.8
2h (+sMBR) 27.3 28.7 42.3 32.8
25h (weight decay) 25.9 26.2 42.4 31.5
25h (+sMBR) 26.6 26.2 41.5 31.4
75h (weight decay) 26.4 24.0 41.8 30.7
75h (+sMBR) 26.7 23.8 40.7 30.4
200h (weight decay) 25.8 23.3 41.6 30.2
200h (+sMBR) 26.4 23.0 41.4 30.3

7. Conclusion
In this paper, we have demonstrated how neural network sys-
tems can be efficiently adapted with limited transcribed acous-
tic data starting from a well trained network using a regularized
form of cross entropy based neural network training. The per-
formance of these adapted models are significantly improved
further with sMBR based sequence training, resulting in a net
gain of 24.8% relative. With adaptation data likely to biased
with only a few speakers we present empirical evidence that al-
though there can be large variance because of the distribution
of speakers, the proposed recipe can still be effective. As un-
supervised data is more likely to be available for adaptation,
the paper also explores the effect of unsupervised data on both
the cross-entropy and sequence training parts of the adaptation
recipe. With its empirical results the paper gives insights on
how to best collect and use domain adaptation data given the
cost and time effort behind data collection in new domains.
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