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Abstract

In this paper, we propose to improve speaker verification
performance by importing better posterior statistics from acous-
tic models trained for Automatic Speech Recognition (ASR).
This approach aims to introduce state-of-the-art techniques in
ASR to speaker verification task. We compare statistics col-
lected from several ASR systems, and show that those collected
from deep neural networks (DNN) trained with fMLLR features
can effectively reduce equal error rate (EER) by more than 30%
on NIST SRE 2010 task, compared with those DNN trained
without feature transformations. We also present derivation of
factor analysis using variational Bayes inference, and illustrate
implementation details of factor analysis and probabilistic lin-
ear discriminant analysis (PLDA) in Kaldi recognition toolkit.
Index Terms: Speaker verification / identification, speech
recognition, deep neural networks, kaldi

1. Introduction

Factor analysis [1, 2] has become a dominant methodology for
speaker verification in the last few years. This model is trained
to learn a low-dimensional subspace from high-dimensional
Gaussian Mixture Model (GMM) supervector space. The pro-
jected low-dimensional vector is used to represent different
identities, thus denoted as i-vector (identity vector). I-vectors
are usually transformed using a probabilistic linear discrimi-
nant analysis (PLDA) model to produce verification scores [3],
which could be seen as a score normalization step. It has been
shown that this could improve speaker verification performance
significantly.

While deep learning has been successfully used for acous-
tic modeling in speech recognition [4-6], it is a harder task
to apply it to speaker verification. The reason for this is two-
fold: 1. speaker verification is not a standard classification task
where targets are defined during training — unknown speakers
may show up during enrollment phase or testing phase; 2. train-
ing data for speakers are limited, e.g. a 3-minute recording may
only be used to extract one i-vector for the speaker. However,
a novel scheme is proposed in [7] where DNN is introduced to
perform frame alignment in GMM supervector generation. This
approach is shown to be effective for speaker verification and a
30% relative reduction on equal error rate (EER) was achieved.
The authors reasoned that this approach allows system to factor
out content information and make use of phonetic content. On
the other hand, authors in [8] use bottleneck features extracted
from a ASR deep neural network to do speaker and language
recognition, and shows that it gives better performance when
compared with DNN posteriors combined with MFCC feature.

In this paper, we further investigate the effectiveness of in-
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Figure 1: Speaker verification pipeline

corporating ASR acoustic model into factor analysis. Following
the scheme in [7], we collect posterior statistics from Deep Neu-
ral Networks (DNN) trained with raw MFCC and MFCC with
different feature transformations, including Linear Discrimi-
nant Analysis (LDA), Maximum Likelihood Linear Transfor-
mation (MLLT) and feature-space Maximum Likelihood Lin-
ear Regression (fMLLR). We also perform decoding for speech
utterances and try to use decoded lattice posteriors for speaker
verificiation. All these method have shown improvement over
naive DNN trained with MFCC features. This also opens up
a basic question for factor analysis based speaker verification:
what is the best way to generate posteriors for i-vector extrac-
tion? On the other hand, we provide derivation of factor anal-
ysis for speaker verification using variational Bayesian frame-
work, with bias term included in hidden variables as is done in
Kaldi. Implementation details of factor analysis and PLDA in
Kaldi toolkit are also discussed.

In following sections, we present standard speaker ver-
ification pipeline and illustrate the details of Kaldi’s imple-
mentation. We then proceed to introduce LDA, MLLT and
fMLLR transformations for speech recognition and sequence-
discriminative training. Finally, we present experimental results
comparing different systems.

2. Speaker verification pipeline

A general speaker verification pipeline is shown in Figure 1.
Thanks to the scheme proposed in [7], one could use separate
feature streams for frame posterior estimation and speaker ID
front-end. The focus of this work is comparing ASR acoustic
models for frame posterior generation.
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Figure 2: Graphical model of mixture factor analysis

2.1. Factor analysis for speaker identification

Factor analysis for speaker identification is well-formulated in
[2]. In this section, we propose to preserve the GMM struc-
ture and mixture priors of the model, and derive training for-
mulas using variational Bayes inference. This is different from
the model used in [2] where fixed frame alignments are used
for model formulation. Our approach is in line with what was
mentioned in [7] when alignments are replaced by prior. This
derivation makes it clear how we perform EM for mixture factor
analysis.
Speech features are modeled by GMM with prior

Tilcie, zi ~ N(Ac, 20, Ve, )

ZiNN(V7I)7 (1)

Cit ™~ pc(k)

where x; . is feature vector for frame ¢ of conversation
i. c;¢ indicates the mixture that generates xz;:. 2; is a
q-dimensional latent factor (i.e. i-vector) for this conversa-
tion, and p.(k) is prior distribution of Gaussian mixtures, with
> 1 pc(k) = 1. The model is shown in Figure 2, and model
parameters 6 = {A., ¥.|Vc}.

To perform maximum likelihood estimation (MLE), we use
likelihood function as our objective

p(x]0) = Hp(zi) 1D _p@ileis zi,00pc(cie) (@)

and it is maximized using EM algorithm with auxiliary function

Q(9|9t) = Ec,z\x,ﬂt lng(m7 c, Z|0)
= Ez|z,6t [Ec|z,z,9t 10gp(£7 C, Z|0)]

log p(x, ¢, 2|0) o log p(x, |z, 0) + Z log(p(z:)) 3)
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where © = {x;+|Vi, Vt}, c = {ci+|Vi, Vt}, z = {2:|Vi}. Here,
both z and c are considered as latent variables in EM frame-
work.

Since z and c are conditional dependent, there is no close
form solution to update them in a joint fashion. However, we
could approximate auxiliary function and posterior distribution
assuming conditional independence between z and ¢

Q(e‘et) ~ ]Ez\zﬁt I:]Ec\m,et 1ng($7 ) 2‘0)] (4)

Following the derivation of EM for GMM in [9], the auxil-
iary function could be simplified as
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where 'yf + denotes posterior distribution of ¢; ; given z; ¢, i.e.
Pela(k|Tit).

From here we need posterior distribution of z given x to
proceed.

p(zilws) o< p(zi)p(xi|2:)

o p(z) H Z p(Tielcie, zi)p(cie) ©

Here z; = {x;,¢|Vt}, and similarly ¢; = {c; +|Vt}.
This is also intractable for analytical solution. However, we
could use variational Bayes method [10] to approximate it by

Pzilas) = p(zi)ePeiles 08 P(icilzi0)

~ p(z) [T TT ol )7 ™
t k

So E-step gives
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and maximize the auxiliary function w.r.t. z; gives
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These formulas are consistent with those derived in [2] us-
ing posteriors in model formulation.

After updating projection matrix and covariance matrix,
Kaldi also applies a Minimum-Divergence (MD) [11] step to
speed up model learning, which includes an extra step to up-
date prior v. An extra transformation (Householder transforma-
tion) [12] is used to complete prior update.

1
= 71*;2 T
Zi Zt'yzk,t | Z

2.2. PLDA for speaker identification

Several formulations of PLDA have been proposed by re-
searchers, and they can be unified as the same one [13]. Kaldi’s
PLDA follows the formulation proposed in [14].

Tij = pg + Auig, wig~N(vi, I), vi ~N(0,¥) (10)

where x; ; is sample j from speaker 4 (in this case, they are
i-vectors extracted from previous step), jiq is global mean of
the data sample. w; ; is sample-specific latent vector in trans-
formed space, and A is the transformation. v; is speaker specific
latent vector for speaker ¢, and its variance VU is a diagonal ma-
trix. This model assumes equal variance for different identities,
which could be seen as score normalization model.

Though this model could be trained by EM directly, the
training process becomes easier if we convert it to two-
covariance form [15]

Yi NN(Osz)

1)
Ti gy ~ N(pg + i, Zw)

Here, y; is latent vector for speaker i. X p is between-class
variance and Xy is within-class variance.



The conversion is done by setting

yi=Avi;, Sp=A UA, Sw=AA (12)
14g is estimated as global mean of training data and is fixed dur-
ing model training.

Kaldi uses an EM algorithm that is slight different from
what was described in [13]. Model learning is speeded up by
introducing m; n% Ej Z;,j, so the model becomes

Yi ~ N 0, EB
(0,%5) B 13)
milys ~ N(pg +yi,ni Sw)
and auxiliary function is
Q016°) = By, m, ot log p(mi, y:]0)
i 14

p(ma, yil0) = p(maly:)p(ys)

In E-step, conditional expectation are derived using conjugate
prior

Eyjm; = (niSy +557) 7 Sy (mi — ) (1s)
Vary,|m; = (ningl + Eg1)71
and M-step model update formulae is
1
Xw = D By, 1 (mi — g — y:) (mi — g — )
1 T
Yp = N Z]Ey”mi YiYi
i
(16)

The model is then converted back to the form shown in
Equ. (10) by performing Cholesky decomposition of ¥y and
eigenvalue decomposition of transformed > p.

Once the model is trained, transformed vectors u; ; could
be extracted form i-vector x; ;, and then used for inference
against enrollment data. This part is covered in Section 3.1
in [14].

3. Importing statistics from ASR

A novel framework for speaker recognition was proposed in [7]
where a DNN trained for ASR is used to produce frame align-
ments. These alignments are used as vﬁt in equation 8§ in our
formulation. It was stated that this pipeline integrates the in-
formation from speech content directly into the statistics. In
this work, we further investigate the effectiveness better senone
posteriors.

Many techniques that improve ASR performance are based
on transformation of feature / model, and another family of
methods called sequence-discriminative training [16] analyzes
conditional dependence between frames and optimizes objec-
tives defined with regard to whole utterances.

3.1. Linear Discriminant Analysis for speech recognition

LDA is a well-known technique for speech recognition [17,18].
In general, we seek to obtain a transformation so that it maxi-
mizes the separability of transformed data. This is usually done
by solving a generalized eigen-value decomposition problem.
In Kaldi, LDA transformation matrix is computed to project
MFCC features (with delta and acceleration) into a 40-dim sub-
space with triphone senones as class labels.
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3.2. Maximum Likelihood Linear Transformation

MLLT (also known as Global Semi-tied Covariance) is another
important technique for speech recognition [19, 20]. It is a
global transformation matrix that is used to maximize frame
log-likelihood with respect to some constraint. This is usu-
ally done using Expectation Maximization. In Kaldi, MLLT is
performed on top of LDA features and is performed in feature
space.

3.3. fMLLR transforms

fMLLR (also known as CMLLR) is a useful technique for
speaker-adaptive training (SAT) of speech recognition [21]. Itis
a speaker-specific feature-space affine transformation that max-
imize frame log-likelihood, estimated using EM. Kaldi per-
forms SAT on top of LDA and MLLT.

3.4. Sequence discriminative training

Sequence discriminative training was developed to address se-
quential feature of speech. In brief, it tries to optimize ob-
jectives that are closely related to sequence classification ac-
curacy [16]. Popular objectives include Maximum Mutual In-
formation (MMI) [22], boosted MMI (BMMI) [23], Minimum
Phone Error (MPE) [24] and state-level Minimum Bayes Risk
(sMBR) [25].

4. Experiments
4.1. Datasets

We use 300-hour Switchboard-I Training set [26] for ASR
model training. The data for ASR system development is the
1831-segment SWB part of the NIST 2000 Hub5 evaluation
set [27]. The UBM and i-vector model training data consists
of SWB and NIST SREs. The SWB data contains 21,254 utter-
ances from 6,820 speakers of SWB 2 Phases I, II and III. The
SRE dataset consists 18,715 utterances / channels from 3.009
speakers of SREs from 2004 to 2006. PLDA model is trained
using NIST SREs from 2004 to 2008, which consists of 28.579
utterances from 5.321 speakers.

We evaluate our systems on the condition 5 extended task
of SRE10 [28]. The evaluation consists of conversational tele-
phone speech in both enrollment and test utterances. There are
387,112 trials, over 98% of which are non-target comparisons.

4.2. Setup

In this paper, the Kaldi toolkit [29] is used for both speech and
speaker recognition. For speech recognition system, standard
13-dim MFCC feature is extracted and used for maximum like-
lihood GMM model training. Features are then transformed us-
ing LDA+MLLT before SAT training. After GMM training is
done, three tanh-neuron DNN-HMM hybrid systems are trained
using different kinds of features: 1. MFCC; 2. LDA + MLLT
transformed MFCC; 3. LDA + MLLT + fMLLR transformed
MEFCC. Details of DNN training follows Section 2.2 in [30].

For speaker verification system, we follow the setup in [31].
The front-end consists of 20 MFCCs with a 25ms frame-length.
The features are mean-normalized over a 3 second window.
Delta and acceleration are appended to create 60 dimensional
frame-level feature vectors. I-vector dimension is set to 600 by
default.

To get fMLLR transformations, we need to perform ASR
for all speaker verification data and also a pre-ASR Voice Activ-



ity Detection (VAD). VAD is done by performing phone decod-
ing with limited search beam, following Kaldi’s Babel recipe for
audio segmentation. Then we perform speaker independent de-
coding and then fMLLR decoding in an iterative fashion. These
steps are time-consuming in practice, so this is not very appli-
cable for real-time scenarios yet.

4.3. Effect of transformations

Table 1 shows EERs of factor analysis systems trained with dif-
ferent posteriors !, and Figure 3 plots corresponding DET curve
for these systems. All the experiments in this table use standard
speaker ID MFCC features. As is shown, significant improve-
ments are achieved when we use posteriors from DNN trained
with transformations 2. We could also see that improvements on
EER aligns with speech recognition performance of ASR sys-
tems, and the best performance is from sequence discriminative
training with LDA, MLLT and fMLLR transformation.

eval2000 EER
WER male | female all
UBM (4096) - 5.92 6.80 6.36
UBM (8192) - 5.83 6.80 6.31
DNN-MFCC (8824) 19.4 5.63 7.05 6.39
+LDA + MLLT 16.3 5.46 6.64 6.11
+ SAT (fMLLR)* 15.0 3.98 5.02 4.55
+ MPE* 13.5 3.58 4.75 4.38
GMM-fMLLR-latpost* 21.8 4.50 5.99 5.45
DNN-fMLLR-latpost* 15.0 4.16 5.00 4.66

Table 1: Experiments using MFCC speaker ID feature with pos-
teriors from different systems

4.4. Posterior from lattice

We also try to incorporate phonetic content using posteriors
from decode lattices. We could see from Table 1 that these
posteriors give comparable results as those come right out of
acoustic models. However, they do require more computation,
so in general these are not good alternatives for this task.

4.5. Using ASR features for speaker verification

We learn from Section 4.3 that posteriors generated from
fMLLR-DNN benefit speaker verification a lot. This is some-
what surprising because fMLLR transformation is believed to
remove speaker specific information. However, it gives better
posterior estimates, and thus help speaker verification. In this
section, we would like to use transformed features for speaker
verification directly. Table 2 compares different features front-
end for factor analysis, where they all share the same posteriors
from fMLLR based DNN. “Default” denotes original MFCC
feature used in previous experiments, “ASR LDA+MLLT” de-
notes MFCC feature transformed by LDA and MLLT, and “ASR
fMLLR” denotes MFCC feature transformed by LDA, MLLT
and fMLLR. We could see from the table that both LDA+MLLT
and fMLLR features degrade system performances. This is con-
sistent with our knowledge of SAT. Meanwhile, it is interest-

ISpeaker verification EERs in these experiments are worse than
those reported in [31] because we are using less data for UBM, FA and
PLDA model training. Specifically, we left out Switchboard Cellular,
SRE 2005 test set, SRE 2006 test set and SRE 2008 due to computation
issue.

2 Asterisk (*) indicates experiments require decoding of speech
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Figure 3: DET curve for speaker ID performance

ing to note that these features, though transformed to remove
speaker specific characteristics, still contain speaker informa-
tion and can be used for speaker ID. This might raise an issue
when one wants to protect speaker information by applying fM-
LLR transform on speech features and transmit over the Inter-
net.

EER
Speaker recog feats ale T Temale T all
Default 3.98 5.02 | 4.55
ASR LDA+MLLT 543 7.24 6.35
ASR fMLLR 7.85 9.42 8.84

Table 2: Experiments using DNN fMLLR posteriors with dif-
ferent speaker ID feature front-end

5. Conclusions and future work

In this paper, we study the effectiveness of state-of-the-art ASR
techniques for speaker verification. We found that speaker ver-
ification performance aligns with speech recognition perfor-
mance when we import posteriors from acoustic models trained
for ASR. Out of all the systems, DNN trained with fMLLR fea-
tures and MPE objective produces posteriors that benefit factor
analysis most. We also presented derivation of factor analysis
in the framework of GMM with mixture prior, using variational
Bayes inference, and explains implementation details in Kaldi
toolkit.

Future work may include combining ASR with speaker
recognition so that they could be done in a joint fashion.
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