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Abstract
Automatic identification of foreign accents is valuable for many
speech systems, such as speech recognition, speaker identifica-
tion, voice conversion, etc. The INTERSPEECH 2016 Native
Language Sub-Challenge is to identify the native languages of
non-native English speakers from eleven countries. Since dif-
ferences in accent are due to both prosodic and articulation char-
acteristics, a combination of long-term and short-term training
is proposed in this paper. Each speech sample is processed into
multiple speech segments with equal length. For each segment,
deep neural networks (DNNs) are used to train on long-term
statistical features, while recurrent neural networks (RNNs) are
used to train on short-term acoustic features. The result for each
speech sample is calculated by linearly fusing the results from
the two sets of networks on all segments. The performance
of the proposed system greatly surpasses the provided baseline
system. Moreover, by fusing the results with the baseline sys-
tem, the performance can be further improved.
Index Terms: accent identification, deep neural networks,
prosody, articulation

1. Introduction
Accent classification refers to the problem of inferring the
native language of a speaker from his or her foreign accented
speech. Identifying idiosyncratic differences in speech produc-
tion is important for improving the robustness of existing speech
analysis systems. For example, automatic speech recognition
(ASR) systems exhibit lower performance when evaluated on
foreign accented speech. By developing pre-processing algo-
rithms that identify the accent, these systems can be modified
to customize the recognition algorithm to the particular accent
[1] [2]. In addition to ASR applications, accent identification
is also useful for forensic speaker profiling by identifying the
speaker’s regional origin and ethnicity in applications involving
targeted marketing [3] [4]. In this paper we propose a method
for classification of 11 accents directly from the speech acous-
tics.

A number of studies have analyzed how elemental compo-
nents of speech change with accent. Spectral features (e.g. for-
mant frequencies) and temporal features (e.g. intonation and
durations) have all been shown to vary with accent [5] [6].
These features have been combined in various statistical models
and machine learning methods to automate the accent classifi-
cation task. Gaussian Mixture Models (GMMs) and Hidden
Markov Models (HMMs) are commonly used approaches in
many earlier studies [7] [8] [9]. For example, Deshpande et al.
used GMMs based on formant frequency features to discrimi-

nate between standard American English and Indian accented
English [7]. Chen et al. explored the effect of the number of
components in GMMs on classification performance [10]. Tang
and Ghorbani compared the performance of HMMs with Sup-
port Vector Machine (SVM) for accent classification [11]. Oth-
ers have also considered linear models. Ghesquiere et al. used
both formant frequencies and duration features and proposed
an “eigenvoice” approach for Flemish accent identification [8].
Kumpf and King proposed to use linear discriminant analysis
(LDA) for identification of three accents in Australian English
[12].

Artificial neural networks, especially Deep Neural Net-
works (DNNs) and Recurrent Neural Networks (RNNs) have
been widely used in state-of-the-art speech systems [13] [14]
[15] [16]; however in the area of accent identification, there are
only a few studies evaluating the performance of neural net-
works [17] [18]. Nonetheless, in a related area, language identi-
fication (LID), neural networks have been investigated exhaus-
tively [19] [20] [21]. A recent study in this area explored the
use of recurrent neural networks for automatic language iden-
tification [22]. Their study also suggests that the combination
of recurrent and deep networks can lead to significant improve-
ments in performance. Inspired by this work, in this paper, we
propose a system that combines DNNs and RNNs. In contrast
to the work in [22], we propose to take advantage of both long-
term and short-term features since previous work shows that
foreign accents depend on both long-term prosodic features and
short-term articulation features. The final prediction is obtained
by linearly fusing the results from the two neural networks.

The organization of this paper is as follows. Section 2
briefly describes the goal, the dataset and the baseline system
for the INTERSPEECH 16 Native Language Sub-Challenge.
Section 3 introduces the proposed system that combines long
and short term features using DNNs and RNNs. The corre-
sponding experimental setup is also described in this section.
The evaluation results are shown in Section 4. The discussion
and the conclusion are in Section 5.

2. Dataset and the Baseline System
The provided dataset for the INTERSPEECH 16 Native Lan-
guage Sub-Challenge contains a training, a development, and
a test set. The corpus contains one speech sample from 5132
speakers, labeled with one of the 11 native languages. The
training and development sets are each assigned 3300 and 965
samples respectively. The remaining 867 samples are assigned
to the test set. The length of each sample is 45 seconds. A
detailed description of the dataset can be found in the baseline
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Table 1: Confusion matrix of baseline system on development
set. Rows are reference, and columns are hypothesis.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 31 3 6 7 5 5 6 5 5 6 7
CHI 4 38 5 4 5 2 5 9 7 4 1
FRE 11 7 29 9 0 5 3 1 9 0 6
GER 4 4 5 54 1 7 2 3 6 1 0
HIN 3 2 2 0 48 2 1 2 2 21 0
ITA 6 3 8 7 6 46 0 3 10 1 4
JPN 4 13 5 2 2 1 35 11 10 1 1
KOR 3 20 1 3 2 3 13 31 5 3 6
SPA 6 11 15 6 2 4 9 8 33 1 5
TEL 2 0 3 2 24 2 3 1 2 42 2
TUR 6 4 4 6 2 6 7 8 5 0 47

paper [23].
The goal of the Native Language Sub-Challenge is to

identify the corresponding native language from the accented
speech. The challenge is particularly difficult for two reasons:
first, all of the speech samples were recorded with babel back-
ground noise using low-quality head mounted microphones.
Second, in addition to accent differences, a large number of the
speakers were not perfectly fluent in English; therefore there
were a number of pauses and linguistic fillers in the speech. In
our proposed system we try to address these challenges by us-
ing a voice activity detection (VAD) to remove the pauses and
using a non-linear learning algorithm to model the relationship
between the features and the class label.

The baseline system against which we compare used 6373
long-term features extracted from each speech sample with
openSMILE [24]; these include prosodic features (range, maxi-
mum, minimum of F0, sub-band energies, peaks, etc.) and var-
ious statistics of traditional acoustic features (mean, standard
deviation, kurtosis of MFCC, RASTA, etc.). A support vector
machine (SVM) is constructed to model the data. More detail
about the baseline system can be found in [23]. The perfor-
mance of the baseline system on development set is shown as a
confusion matrix in Table 1. The overall accuracy is 44.66%.
The recall for each class and the unweighted average recall
(UAR) is shown in the second column of Table 2.

3. Proposed System Description and
Experimental Setup

The proposed system is shown in Figure 1. It consists of a voice
activity detector, followed by two parallel neural networks (a
DNN and an RNN) analyzing the speech samples at different
scales, and a probabilistic fusion algorithm. Below we describe
each component of the model.

Voice Activity Detection: As mentioned previously, there are
a number of pauses and silences in the speech samples. These
were often due to the fact that some of the speakers did not
speak fluent English and paused to think of the proper expres-
sion. We first used voice activity detection (VAD) [25] to re-
move the silence periods. The VAD threshold was adjusted
to match the noise level of the speech samples using cross-
validation and we only removed the detected silence segments
with length longer than 300 milliseconds.

Framing and Feature Extraction: The remaining speech sam-
ples were then trimmed into multiple segments with equal
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Figure 1: The proposed system of combining long and short
term features using DNNs and RNNs.

length of 4 seconds. Thus every 45-second speech sample was
segmented into approximately 10-11 parts. Long-term features
we used were the same as those in the baseline system (mean,
standard deviation, kurtosis of MFCC, RASTA, etc.). They
were extracted from each segment in each speech sample with
openSMILE scripts. Each 4-sec window was further split into
25ms windows with a 10ms overlap. Short-term features were
extracted from each 25ms signal. Specifically, we used 39th-
order mel-scale filterbank features with logarithmic compres-
sion [26].

Deep Neural Network: A DNN was constructed to make a pre-
diction regarding the accent type from the long-term features.
The structure of the DNN is as follows: There was an input
layer with 6373 nodes corresponding to each dimension in the
feature set. Three hidden layers with 256 nodes for each fol-
lowed. Rectifier linear units (“ReLU”) were used at the output
of each layer and we use the dropout method to prevent over-
fitting - each input unit to the next layer can be dropped with
0.5 probability [27]. The output layer contained 11 nodes cor-
responding to the 11 accents with softmax activation functions.
Stochastic gradient descent with a batch size of 128 was used
for training. The learning rate and momentum were set to 0.001
and 0.9 respectively. All of the parameters were optimized on
the development set. We attempted to use principal componen-
t analysis (PCA) to reduce the input feature dimension from
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Table 2: Recall for each class and the unweighted average recall
(UAR) on development set given by different systems (%)

Baseline DNN+RNN Baseline
+DNN+RNN

ARA 36.0 39.5 41.9
CHI 45.2 65.4 65.5
FRE 36.3 45.0 50.0
GER 62.1 62.4 68.2
HIN 57.8 79.5 77.1
ITA 48.9 64.9 68.1
JPN 41.2 43.5 44.7
KOR 34.4 42.2 47.8
SPA 33.0 26.0 35.0
TEL 50.6 43.4 49.4
TUR 49.5 62.8 66.0
UAR 45.1 52.2 55.8

6373 to 800. Our hope was that this would reduce the size of
the model, making it easier to train, and improving its robust-
ness; however the cross-validation results on the development
set after PCA decreased slightly, therefore we kept the original
feature set.

Recurrent Neural Network: The RNN was trained on the
short-term features extracted from 25ms frames of speech. Cat-
egorical labels were assigned to each frame of the segment. The
results for each sample were calculated by averaging the pre-
dictions on all frames in all segments. The structure of RNN
is as follows: The input data is sequentially fed into the RNN
frame-by-frame. Each frame is of dimension 39. Two hidden
layers with 512 long short term memory (LSTM) nodes were
used. In each LSTM node, there is a cell state regulated by a
forget gate, an input gate and an output gate. The activation
function for the gates was a ‘logistic sigmoid’ and for updat-
ing the cell state we used a ‘tanh’. The accent label was as-
signed to every 25ms speech frame - the LSTM layers allowed
the model to learn long-term dependencies by taking the output
of the previous hidden nodes as part of the inputs to the cur-
rent nodes. Our hypothesis was that with this kind of structure
the model could learn differences in articulation (e.g. formant
values) and differences in how articulation changes over time
(e.g. formant trajectories) for different accents. Specifically,
as shown in the RNN part of Figure 1, the input is a time se-
ries of acoustic features X = [x1, ...,xn, ...,xN] with length
N. After training, the RNN computes the hidden sequences
H = [h1, ...,hn, ...,hN] and outputs the probability predic-
tions for each frame Y = [y1, ...,yn, ...,yN] by iterating from
n = 1 to N as follows [28]:

−→
h t = fθ(Wx

−→
h
xt +W−→

h
−→
h
ht−1 + b−→

h
),

yt = w−→
h y

−→
h t + by.

(1)

For training the model, we followed a similar approach to
the DNN. We used the dropout methods with each of the input
units to the next layer dropped in 0.5 probability [29]. The RM-
SProp algorithm was used for optimization [30] with a learning
rate of 0.001 and a batch size for training of 256 samples.

Generating a final decision: We interpret the output of the
activation functions of both the DNN and the RNN as a poste-
riori probabilities. The final decision was calculated by fusing
these two estimations. Suppose the complete speech sample

Table 3: Accuracy and UAR for the variations of the systems
on development set

RNN
only

DNN
only

Fusion
on segments

DNN with
RNN(on sequence)

Accuracy (%) 42.9 49.1 49.8 50.2
UAR (%) 43.2 49.5 50.0 50.4

from a speaker (≈ 45 sec) is segmented into S 4-sec parts. The
DNN provides as an output a probability vector that describes
the probability that the input segment belongs to any of the 11
classes. Thus, the probability prediction given by DNN for the
ith segment in the jth class is denoted by PDNN(i, j), where
i = 1, 2, ..., S and j = 1, 2, ..., 11. The RNN also provides a
probability vector, but it is predicted on every 25ms frame in-
stead of on every segment. For the same 4-sec segment used
in the DNN, we can combine the results from the individual
frames into a single prediction for the segment, PRNN(i, j), as
follows:

PRNN(i, j) =
1

N

N∑
n=1

pRNN(n, j) (2)

where PRNN(n, j) is the prediction of the RNN on the nth

frame for the jth class dimension with n = 1, 2, ...N, j =
1, 2, ..., 11. N is the total number of frames in speech segment
i, i = 1, 2, ..., S.

After combining the individual probabilities for each frame
into a single probability for the segment, we can combine the
DNN and RNN probabilities using a weighted average. The
final probability score P (j) on the complete sample in the jth

class is calculated as Equation 3.

P (j) =
1

S

[
wDNN

S∑
i=1

PDNN(i, j) + wRNN

S∑
i=1

PRNN(i, j)

]
(3)

where i = 1, 2, ...S, j = 1, 2, ..., 11. wDNN and wRNN are the
weights for DNN and RNN predictions. They are determined
by the accuracy of DNN and RNN on the development set as
follows, {

wDNN = AccDNN
AccDNN+AccRNN

wRNN = 1− wDNN
(4)

where Acc∗ is the accuracy of the model, which is the propor-
tion of correct predictions. A final decision is made by selecting
the class with the highest probability.

4. Evaluation and Results
Both the DNN and RNN were trained with the Python neural
networks library, Keras [31], running on top of Theano on a
CUDA GPU. The data was normalized to zero mean and unit
standard deviation, using the mean and standard deviations from
the training set. The results are shown as recall for each class
in the third column of Table 2. The overall accuracy is 51.92%,
and the UAR is 52.24%.

We also made a number of variations of the system and test-
ed the performance on the development set. The first two varia-
tions (DNN only and RNN only) use the DNN and RNN alone
without any fusion. The third variation (Fusion on segments)
uses both the DNN and RNN, but the prediction is obtained by
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Table 4: Confusion matrix of the proposed system fused with
baseline on development set. Rows are reference, and columns
are hypothesis.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 36 3 3 8 5 6 3 0 4 6 11
CHI 1 55 3 3 4 4 1 7 2 2 2
FRE 9 1 40 3 2 9 1 2 8 1 4
GER 3 7 4 58 1 5 0 0 1 1 5
HIN 0 1 0 0 64 1 2 0 0 14 1
ITA 7 1 5 3 4 64 1 0 5 0 4
JPN 3 15 2 0 2 4 38 12 8 1 0
KOR 2 21 1 2 2 2 9 43 4 1 3
SPA 6 8 8 2 5 9 7 8 35 3 9
TEL 2 1 0 2 34 1 0 0 2 41 0
TUR 9 2 0 5 3 6 2 1 3 1 62

… …

𝒚

𝒉1 𝒉2 𝒉n 𝒉N

𝒙1 𝒙2 𝒙n 𝒙N

Outputs

Inputs

Figure 2: Many-to-one RNN structure used in the method of
DNN with RNN(on sequence).

fusing the results on segments (see Equation 5) instead of fusing
on speakers (see Equation 3).

P (j) =
1

S

S∑
i=1

[wDNNPDNN(i, j) + wRNNPRNN(i, j)]. (5)

Comparing the equation above with Equation (3), we see that
the weights are inside the summation whereas they are outside
the summation in (3).

For the fourth variation (DNN+ RNN (on sequence)), the
structure is the same as that of the proposed system. The differ-
ence is in the way we train the RNN. In this method, we train the
RNN on the segment level instead of on the frame level. In other
words, the accent label was assigned to the segment instead of
assigning it to every frame. This can be interpreted as a many-
to-one model in Figure 2. The fusion between the DNN and the
RNN was done in the same way as in the proposed system. The
accuracy and UAR for these variations of the system are shown
in Table 3. The results show that none of the variations of the
system performs better than the current system.

Fusing with baseline. Comparing the results between the base-
line and the proposed systems, we can see that the proposed
system outperforms the baseline system overall and for most of
the accents. However, for some of the accents, such as Spanish
(SPA) and Telugu (TEL), the baseline system seems to work
better than the proposed system. It seems that the neural net-
works and the SVM learned complementary representations of
the data for the task. Therefore, we tried to fuse the predic-
tion between the SVM-based baseline system and the proposed
DNN/RNN based system. The weights of the fusion algorithm
were tuned on the development set (set to 0.9 for the proposed

Table 5: Confusion matrix on test set. Rows are reference, and
columns are hypothesis.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR
ARA 28 2 3 2 3 9 10 6 4 3 10
CHI 1 45 1 2 0 2 13 4 2 2 2
FRE 5 4 38 5 1 7 5 4 4 4 1
GER 0 7 6 45 1 4 1 0 3 1 7
HIN 5 3 1 2 41 0 0 0 2 27 1
ITA 5 3 7 2 2 37 0 0 6 4 2
JPN 5 5 0 2 1 1 49 10 0 0 2
KOR 2 13 1 1 1 1 12 41 4 0 4
SPA 7 5 10 4 4 8 5 4 26 1 3
TEL 1 1 0 0 29 0 0 2 0 54 1
TUR 14 4 5 2 1 2 4 2 4 1 51

Table 6: Recall for each class and the UAR on the test set (%)
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR UAR

35 61 49 60 50 54 65 51 34 61 57 52.5

system and 0.1 for the baseline system). The accuracy after fus-
ing increased to 55.54%. The recalls are shown in the last col-
umn of Table 2. From the table, we can see the performance
improved further after fusing with the baseline system. The
confusion matrix is shown in Table 4.

The best performance we can achieve on the test set is
shown as confusion matrix in Table 5 and recalls in Table 6.
The overall accuracy is 52.48% and the UAR is 52.48%. This
is better than the performance of the baseline system reported
in [23].

5. Discussion and Conclusion
In this paper, we present an accent identification system by
combining DNNs and RNNs trained on long-term and short-
term features respectively. We process the original speech sam-
ples into multiple segments to generate predictions of the accent
type from each sample using neural networks, then to fuse them
across all samples from a single speaker. Moreover, by fus-
ing the results between DNNs and RNNs, we take advantage
of both long-term prosodic features and short-term articulation
features. We have evaluated the proposed system on the devel-
opment set and the test set. The results show that the proposed
system surpasses the performance of the provided SVM-based
baseline system. By fusing the results of the proposed system
with that of the baseline system, performance can be further
improved. However, by looking through the confusion matrix
in Table 4, we see that the system makes more mistakes among
languages which are geographically close, such as between Hin-
di and Telugu; and among Japanese, Korean and Chinese. As
future work it makes sense to develop a hierarchical classifier
that initially considers groups of languages then makes more
fine-grained decisions. Moreover, it is also worthwhile to in-
vestigate the individual benefits of DNNs and RNNs, since for
some languages like Hindi, the prosody is more distinct; while
for others like German, articulation is more important.
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