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Abstract
Collecting training data for real-world text-independent speaker
recognition is challenging. In practice, utterances for a specific
speaker are often mixed with many other acoustic signals. To
guarantee the recognition performance, the segments spoken by
target speakers should be precisely picked out. An automatic
detection could be developed to reduce the cost of expensive
human hand-made annotations. One way to achieve this goal
is by using speaker diarization as a pre-processing step in the
speaker enrollment phase. To this end, three speaker diarization
algorithms based on Bayesian information criterion (BIC), ag-
glomerative information bottleneck (aIB) and i-vector are inves-
tigated in this paper. The corresponding impacts on the results
of speaker recognition system are also studied. Experiments
conducted on Speaker in the Wild (SITW) Speaker Recognition
Challenge (SRC) 2016 showed that the utilization of a prop-
er speaker diarization improves the overall performance. Some
more efforts are made to combine these methods together as
well.

Index Terms: speaker recognition, speaker diarization, speaker
in the wild

1. Introduction
Speech technologies have been developed rapidly during last
decades. The applications of speaker recognition now attrac-
t much more attention. By virtue of i-vector framework and
deep learning, the accuracy of speaker recognition significantly
improved [1]. Even though the performance of state-of-the-art
system in controlled condition is satisfying, it suffers a dete-
rioration in real-world scenario. The background noise [2], re-
verberation [3], channel mismatch [4] and compression artifacts
will all influence the quality of recordings. Moreover, the flex-
ible duration [5], mixture of genders, intra-speaker variability
due to physiological status [6], also exhibit negative impacts on
the practical performance.

Besides, collecting enough audio to train robust speaker
models is another problem. Reliable authentication needs min-
utes of target speaker voice to enroll a model. In practice,
the captured audio often contains multiple speakers talking in
free-style, like telephone conversations and interviews. Sepa-
rating the speech for target speakers is challenging. It is labor-
intensive to annotate multi-speaker audio by human and wastes
plenty of time. Some automatic methods should be developed
to locate excerpts spoken by target speakers.

Some speaker diarization algorithms have been involved to
solve the problem. Speaker diarization aims to answer “who
spoke when” and is able to separate different speakers in one
utterance. Dozens of researches have been done in this field

[7, 8]. Unfortunately, these works mainly focused on the di-
arization error rate (DER) which only reports the correctness of
diarization [9, 10, 11]. However, because we only care about
target speakers, DER shows no necessary connection with the
performance of the back-end speaker recognition. For example,
a method that selects audio excerpts with higher purity of tar-
get speakers, would probably perform better than the one which
achieves lower DER while mixes more non-target segments in
the enrollment data.

In previous NIST speaker recognition evaluation (SRE),
summed-channel telephone conversations are included as op-
tional training and test conditions. Some speaker recognition
experiments have already done on these conditions. But we no-
ticed that the published papers did not compare different speak-
er diarization algorithms in their proposed systems [12, 13, 14].
Also, due to the limited channel conditions in NIST SRE, the
combination of speaker diarization and recognition misses tests
under more wild circumstances.

Recently, SRI released the speaker in the wild (SITW) s-
peaker recognition challenge (SRC) database [15]. The record-
ings in this database are real-world collected and contain both
single- and multiple-speaker data. This database gives us a great
opportunity to investigate various diarization algorithms in s-
peaker recognition systems. In this paper, we first introduce
our i-vector system developed for SITW SRC. Then, three im-
portant diarization algorithms are implemented. Their impacts
on the final performance of speaker recognition are evaluated
under different conditions. We hope this paper could give the
society some empirical understandings about the effects of dif-
ferent diarization methods in speaker recognition systems.

The organization of this paper is as follows. The i-vector
speaker recognition system we developed is briefly introduced
in Section 2. Section 3 describes three speaker diarization al-
gorithms. Our development data, parameter setup and exper-
imental results are presented in Section 4. Finally, Section 5
concludes the paper.

It should be pointed out that the results in this paper were
achieved after the deadline of the SITW challenge.

2. System framework
A standard i-vector system was built during the post-evaluation
period. The system flowchart is shown in Figure 1. Each part is
discussed below.

2.1. Feature extraction

The pre-processing stage of our system consisted of voice active
detection (VAD) and feature extraction. Non-speech frames are
gated using a sub-band entropy VAD algorithm. Static percep-
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Figure 1: The flowchart of our i-vector speaker recognition sys-
tem. In this paper, we focus on the diarization module, which is
emphasized by a shaded block.

tual linear prediction cepstral coefficients (PLP) with log ener-
gy, appended with delta and delta-delta derivations, are extract-
ed as features. Feature warping is applied at last [16].

2.2. Speaker diarization and selection

For audio containing multiple speakers, three diarization meth-
ods were investigated. The algorithms are described in detailed
in the next Section. We selected the speaker clusters with max-
imum overlap with the given annotations. Non-target segments
were discarded.

2.3. Modeling

A gender-independent universal background model (UBM) was
trained and then used to collect Baum-Welch statistics for i-
vector modeling. The UBM and i-vector T matrix were both
trained using EM algorithm.

2.4. Classifier

After i-vectors were extracted, linear discriminant analysis (L-
DA) [17] and Gaussian probabilistic linear discriminant analy-
sis (G-PLDA) scoring [18] were applied. The LDA projection
matrix and G-PLDA were trained using data from background
speakers. The verification scores were the log-likelihood ratio
of the target and non-target hypotheses.

3. Speaker diarization algorithms
In specific conditions of SITW SRC, training utterances con-
tain multiple speakers and noise. If irrelevant speech mixed in,
the quality of models would certainly decrease. In this work,
three important speaker diarization methods are studied to lo-
cate speakers of interest precisely. The algorithms are presented
below.

Algorithm 1 BIC-based diarization

1: Segmentation
1a. Set a pair of adjacent windows in the beginning of the
utterance.
1b. Calculate ΔBIC in the current position.
1c. Slide the adjacent windows on the utterance and com-
pute ΔBIC repeatedly.
1d. Find local maxima along ΔBIC. These points indicate
the potential speaker change points.
1e. Split audio in these positions.

2: Clustering
2a. Treat each segment as a cluster. Calculate ΔBIC be-
tween any possible combinations of current clusters.
2b. Merge segments with the lowest distances.
2c. Update clusters and re-compute the distance matrix.
2d. Repeat 2a-2c until K clusters left. K is the number of
speakers in hypothesis.

3: Viterbi decoding
3a. Use K clusters to generate speakers’ Gaussian mixture
models (GMM) (with relevance MAP adaptation).
3b. Calculate log-likelihoods for all speech frames given
different GMMs.
3c. Decode using Viterbi to find the best path.

3.1. Bayes information criterion-based algorithm

Tranter and Reynolds introduced a general diarization frame-
work in [7]. This framework could be implemented by three
conventional steps: change point detection based on Bayes in-
formation criterion (BIC), BIC-based clustering and Viterbi de-
coding.

Given two sets of observations, whether they are generated
a single model can be measured by BIC formulation

ΔBIC =
1

2
[Nz log |Sz| −Nx log |Sx| −Ny log |Sy|]
− αP

(1)

where x and y denote two Gaussian models estimated from the
distinct sets, while z denotes a single Gaussian which models
all data together, N and S are the number of samples and the
corresponding covariance matrices, respectively. In addition,
P = [d(d + 3)/4] · logNz is the penalty term and d is the
dimension of the observations. The lower ΔBIC is, the more
likely the two sets are generated from one single model.

Equation 1 can be used to measure the similarity between
two speech segments, thus motivates the BIC-based diarization.
The steps are summarized in Algorithm 1.

3.2. Agglomerative information bottleneck method

Information bottleneck (IB) is a powerful clustering framework
in information theory and has been applied in many tasks [19].
IB is first introduced to speaker diarization by Vijayasenan [9].
Given a dataset X , and the relevance variables Y , we try to find
a compact and informative representation C that maximize mu-
tual information I(Y,C) under a constraint on I(X,C). The
representation C is like a bottleneck that the information con-
tains in X about Y passed through.

When applying IB into speaker diarization, speech is first
split into segments with equal length. The features in segment i,
denoted as x(i), are variable X . The relevance variables Y are
defined as the components of a GMM Λ = {wj ,μj ,Σj}Mj=1
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Algorithm 2 aIB diarization

1: Preparation
1a. Split the speech features equally, hence get M seg-
ments.
1b. GMM estimation based on the segmentation.
1c. Compute P (yj |x(i)) for each segment i and component
j.

2: Clustering
Treat P (yj |x(i)) as features and apply aIB clustering algo-
rithm.

3: Viterbi realignment
Viterbi decoding using KL-divergence metric with mini-
mum duration constraint [20].

estimated on the all segments. The mixture of the GMM is M ,
where M equals to the total number of segments.

Apparently, the probability P (yj |x(i)) that the N -frame

segment x(i) belonging to component yj is expressed by

P (yj |x(i)
n ) =

wjN (x
(i)
n |μj ,Σj)

∑M
l=1 wlN (x

(i)
n |μl,Σl)

(2)

P (yj |x(i)) =
1

N

N∑

n=1

P (yj |x(i)
n ) (3)

where x
(i)
n is the n-th sample of segment i. Given X , Y and

P (Y |X), agglomerative IB (aIB) could be applied according to
[9]. Our implementation is shown as Algorithm 2.

3.3. Simplified i-vector-based diarization

The i-vector-based diarization is inspired by the fact that speak-
er information is effectively conveyed by low-dimension vec-
tors. Some works have shown that one can achieve better DER
using this method. Principal component analysis (PCA) is also
exploited to improve the performance [21].

We denote the i-vectors of all segments as {wi}Mi=1. PCA
is applied on these i-vectors and let λi and ui denote the i-th
eigen-value and the corresponding eigen-vector in decreasing
order. The PCA-projected vector is denoted as w′

i, and further
transformed by

ŵi = Λ1/2w′
i (4)

where Λ is the diagonal matrix containing eigen-values. Then
reduce the dimension of ŵi to d0, which is dynamically decided
by

d0 = argmin
d

∑d
i=1 λi∑D
j=1 λj

≥ t0 (5)

where D is the dimension of ŵi and t0 is a pre-determined
threshold. K-means is usually applied to these new vectors.

In our experiment, we simplified this i-vector-based diariza-
tion, and ignored the Viterbi realignment and second pass re-
finement. This would certainly lead to cruder results. We use
s-ivec to denote this algorithm in this paper, and Algorithm 3
describes this simplified version.

3.4. Segmentation using annotations

In SITW SRC, snippets of hand annotations are given for multi-
speaker audio. We exploited this information in the following
way.

Algorithm 3 s-ivec diarization

1: Preparation
1a. Train UBM, i-vector T matrix using developmen-
t datasets.
1b. Equally split the features and extract i-vectors for these
segments.

2: Clustering
2a. PCA, linear transform and dimensionality reduction are
performed according to Section 3.3.
2b. Run k-means clustering to obtain the diarization result.

As demonstrated before, all the diarization algorithms start
with initial segmentation. Therefore, algorithms treat these an-
notated parts as known pure segments, and no splits are allowed
in the intervals. This should lead to a slightly better initializa-
tion. We will discuss the effects later.

3.5. Combination of different algorithms

A empirical voting strategy was attempted to combine different
diarization algorithms. Frames which get more than K votes
from the three algorithms are accepted as the target, i.e., K = 1
denotes the union of all results while K = 3 means the inter-
section.

4. Experimental work

4.1. Experiment setup

The development datasets included NIST SRE 04-08 tel/mic/int
excerpts, with Switchboard Phase II Part 1/2/3 and Cellular Part
1/2. There were 34227 male and 45877 female excerpts in to-
tal. All UBMs, i-vector matrices, LDA and PLDA models were
trained on these data. In the primary speaker recognition sys-
tem, we used 39-dimension PLP features, 2048-mixture UB-
M, 400-dimension i-vectors. The i-vector after LDA was 200-
dimension.

We used different features for speaker diarization. For BIC-
based and aIB diarization, 13-dimension static PLP features
with no normalization were used. For s-ivec diarization, both
13-dimension raw and 39-dimension normalized features were
evaluated. A 1024-mixture UBM, 100-dimension i-vector T
matrix and WCCN transform were trained for 13-dimension
features, while a 2048-mixture UBM, 400-dimension i-vector
plus 200-dimension LDA were tested for 39-dimension fea-
tures. We denote them as s-ivec-1 and s-ivec-2 respectively. The
number of speakers in all multi-speaker audio was assumed to
be 2. This assumption was not true, but we have not explored
this problem yet. The parameters for the three diarziaions fol-
lowed common setups in publications [7, 9, 21].

Our system was experimented in SITW speaker recognition
database, under core-core and assistclean-core conditions. The
SITW corpus was distributed by SRI in 2016 and was collect-
ed from open-source media channels. Hundreds of well-know
figures are involved as person of interest. Noise, reverb, various
speaking conditions, etc., are introduced, making it close to the
real-world situation. Please refer to [15] for more details about
SITW database. We report the main metric Cmin

det for both de-
velopment and evaluation sets in SITW. No calibration problem
was considered in this paper.
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Table 1: The performance of our system in assistclean-core
condition. The results are given for Cmin

det . The results with or
without annotation-assisted segmentation are indicated as w/o
ant. and w/ ant., respectively.

Methods
Dev Eval

w/o ant. w/ ant. w/o ant. w/ ant.

no diar. - 0.6901 - 0.6059

ant. only - 0.7257 - 0.7248

BIC-based 0.5875 0.5878 0.5442 0.5458

aIB 0.6031 0.5968 0.5589 0.5451

s-ivec-1 0.6014 0.6061 0.5527 0.5427

s-ivec-2 0.5787 0.5683 0.5406 0.5288

4.2. core-core condition

The core-core condition in SITW SRC is similar to NIST SRE
but more challenging. We first validated our system in this
condition using the framework introduced in Section 2. The
Cmin

det in development (Dev) and evaluation (Eval) datasets are
0.7262 and 0.7457, respectively. These results were achieved
without any special technologies or system fusion. Considering
the evaluation results of other participants [22], we thought they
were quite acceptable.

4.3. assistclean-core condition

In the assistclean-core condition, enrollment audio are relative-
ly clean and one or more speakers are contained in one record-
ing. Diarization and selection modules in Figure 1 were in-
cluded to find the excerpts of target speakers. Except for the
three diarization algorithms, we also tested two trivial meth-
ods for comparison. The first one used the whole utterance to
train models, while the second one only utilized the annotated
snippets. They are abbreviated as no diar. and ant. only by
convenience. The results are shown in Table 1.

From Table 1, we find that s-ivec-2 diarization consistently
achieves the best performance among all algorithms. It is un-
expected that s-ivec-1 performs worse than s-ivec-2 since it is
well known in speaker diarization that raw static features are
better and WCCN is more effective than LDA. The inferiority
of s-ivec-1 may due to the smaller UBM and lower dimension
i-vectors, but we need more experiments to prove it. We will
only discuss s-ivec-2 below.

If the manual annotations are available, the performance of
aIB and s-ivec diarization improves. It is not the case for BIC-
based method. We explain the phenomenon that the former two
both use equal segmentation, so this auxiliary information may
make their initialization more precise.

Table 1 shows the results that the diarization module is
very important in the multi-speaker condition. It is too short
to achieve a good performance using only the hand annotat-
ed snippets, while no-diarization is not a good option neither.
The system using s-ivec diarization with annotations(s-ivec-2)
significantly outperforms the no-diarization one and achieves
16.1% and 12.7% relative Cmin

det improvement on the develop-
ment and evaluation set, respectively.

Because no speaker transcriptions are available in SITW
database, we cannot compute DER for our algorithms. In order
to obtain some intuitions between the results of diarization and
speaker recognition, we further analyzed the length distribution
of split speaker segments. It is presented in Figure 2.

Figure 2 shows that the segments split by s-ivec have the
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Figure 2: The length distributions of target speaker segments.
The average length for BIC-based, aIB and s-ivec diarization
are 446, 567 and 326 seconds, respectively.

Table 2: The performance of algorithm combination using vot-
ing strategy. The results are given for Cmin

det ..

Dev Eval
w/o anno. w/ anno. w/o anno. w/ anno.

K = 1 0.6012 0.5887 0.5588 0.5494

K = 2 0.5705 0.5806 0.5393 0.5346
K = 3 0.5954 0.5809 0.5495 0.5433

shortest length while the aIB resulted in the longest. The fact
seems to indicate some relationship with the results of speaker
recognition. Thus, we infer that the s-ivec may achieve the best
DER. But what if we only choose some fragments that are more
likely spoken by target speakers? Will the speaker recognition
system benefits from the shorter segments? This idea still needs
more experiments to verify.

We also evaluated the voting strategy to combine various
diarization methods under different values of K. Table 2 illus-
trates the performance. We find that we cannot achieve better
results using this strategy. The probable reason is that, when
using voting strategy, we introduce bad segments when the re-
sults are unified, and miss good segments when intersect them.
So new approaches need to be developed to combine the advan-
tages of different diarization algorithms.

5. Conclusions
This paper introduces a system framework developed for SITW
SRC during the post-evaluation period. Three speaker diariza-
tion algorithms are investigated in detail and evaluated in SITW
SRC. Experimental results show that, the involvement of speak-
er diarization greatly improves the performance. Among all the
algorithms, the i-vector-based diarization achieves the best re-
sults, and the initial manual annotations are helpful to some al-
gorithms. We think the purity of enrollment segments is impor-
tant in this multi-speaker case.

Future work includes improving the combination method,
incorporating a complete version of i-vector diarization and in-
troducing Baum-Welch alignment with deep neural network.
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