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Abstract
Confidence estimation for automatic speech recognition has

been very recently improved by using Recurrent Neural Net-
works (RNNs), and also by speaker adaptation (on the ba-
sis of Conditional Random Fields). In this work, we explore
how to obtain further improvements by combining RNNs and
speaker adaptation. In particular, we explore different speaker-
dependent and -independent data representations for Bidirec-
tional Long Short Term Memory RNNs of various topologies.
Empirical tests are reported on the LibriSpeech dataset showing
that the best results are achieved by the proposed combination
of RNNs and speaker adaptation.
Index Terms: speech recognition, speaker adaptation, confi-
dence measures, recurrent neural networks, blstm

1. Introduction
Confidence estimation (CE) has been broadly investigated in au-
tomatic speech recognition (ASR) with the aim of assessing the
reliability of the ASR output [1]. Over the years, an approach
that has demonstrated to be very effective is to consider CE as a
classical two-category (correct or incorrect) pattern recognition
problem. Following this approach, CE has been gradually im-
proved by exploring novel input features and by designing more
and more accurate classifiers [1, 2, 3, 4].

Recent improvements to CE include the use of Recurrent
Neural Networks (RNNs) [4] and speaker adaptation [3]. On
the one hand, the use of RNNs has yielded better performance
due to its ability to model context [4]. On the other hand, ex-
perimental results have shown that speaker-adapted classifiers
such as naı̈ve Bayes, logistic regression and conditional ran-
dom fields outperform their non-adapted counterparts [3]. It is
worth noting, however, that RNNs and speaker-adaptation have
been studied separately, and thus it is still unclear whether us-
ing them in conjunction would lead to further improvements in
accuracy.

In this work, we explore possible ways to use RNNs and
speaker-adaptation techniques in conjunction. In particular, we
propose to use the long short-term memory (LSTM) version of
RNNs [5]. In this way, the vanishing gradient problem will be
conveniently addressed in the case of long-span relations [6],
while both history and future contexts will be modelled at the
same time through its bidirectional version (BLSTMs). Fur-
thermore, we propose to apply speaker adaptation techniques
to LSTM models through the use of speaker-dependent input
features based on their specific vocabulary, as well as training
speaker-dependent models.

The content of the paper is organized as follows. The pro-
posed speaker-adapted LSTM architecture is presented in Sec-

tion 2. Empirical results on the LibriSpeech dataset are reported
in Section 3, showing that the best results are achieved by the
proposed combination of RNNs and speaker adaptation. Fi-
nally, the conclusions of this work are summarized in Section 4.

2. Speaker-Adapted LSTM Networks for
Confidence Estimation

Recent work on CE [4] suggests that using temporal context
by means of RNNs outperform other approximations where the
sequential dependence cannot be exploited. For that reason, we
propose to use LSTM networks as a further step towards context
dependency. Aside from circumventing the vanishing gradi-
ent problem, LSTM networks introduce a temporal dependence
over the entire segment by means of its bidirectional version. In
this work, we use LSTM networks with both unidirectional and
bidirectional layers, and thus we will refer to them simply as
LSTMs.

What makes LSTM [5] networks different from RNNs
is the use of purpose built-in memory cells which perform
element-wise multiplications to control the information flow in
the network. This memory cells are able to store information
for a long period of time because of a gating structure that de-
termines when the input is relevant enough to remember, when
it should continue to remember or forget, and when it should
yield an output. Specifically, the LSTM cells replace the ac-
tivation function of a classical RNN with the following set of
equations:

it =σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)
ft =σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2)
ct =ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (3)
ot =σ(Wxoxt +Whoht−1 +Wcoct + bo) (4)
ht =ot tanh(ct) (5)

where σ is the logistic sigmoid function and i, f, c, o, h repre-
sent five different vectors at time t from each gate: input, for-
get, cell memory activation, output and hidden layer, respec-
tively. As depicted in Fig. 1, the LSTM Network proposed in
this work follows a classical LSTM architecture. To use it in
CE, input vectors at word-level are composed of two parts: a
compact representation of the word identity and a set of word-
level features extracted from ASR word-lattices.

Word identities have been included in the input vectors as
they have been shown to be very useful in CE [2, 3, 4, 7].
To this end, we have not used a conventional one-hot encod-
ing since this would entail a number of parameters growing
linearly with the vocabulary size. Instead, we have used a
more compact global word vector representation based on a
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Figure 1: LSTM architecture for CE.

“GloVe” model [8]. This is an embedding model, which tries to
maintain the semantic similarities between words in their vec-
tor representation. Two very similar words will result in two
very similar vectors. It is trained on the non-zero entries of
a global word-word co-occurrence matrix which tabulates how
frequently words co-occur with one another in a given corpus,
in this case, the same training as the one used for CE.

Given a sequence of input vectors X = (x1, ...,xT )
which represents a sequence of T recognized words, the net-
work produces a sequence of output vectors Y = (y1, ...,yT )
defining a probability distribution over each class c (c =
{correct, incorrect}). These probabilities correspond to the net-
work’s estimate of observing each class c at time t given X .

The LSTM network is trained to minimize the cross-
entropy error of the targets using a softmax output layer with
2 output units representing the two-category class using the
standard back-propagation through time algorithm (BPTT) [9].
Given a target sequence Z = (z1, ..., zT ), the network mini-
mizes the negative log-probability of the target sequence given
the input sequence:

− logP (Z|X ) = −
T∑
t=1

log yztt (6)

After an LSTM network has been estimated based on
Eq. (6) using a set of N training pairs {X ,Z}N1 , we propose
to adapt the LSTM to a new speaker by performing a few more
iterations of the BPTT algorithm using a small subset of train-
ing pairs belonging to that speaker. It is worth mentioning that
this adaptation also implies adapting the system to the vocabu-
lary of the speaker, so it becomes necessary to re-estimate the
global word vector model taking into account the new vocabu-
lary of the speaker concerned. This is needed to ensure that the
same word representation is used before and after adaptation.

3. Experiments
3.1. Experimental Setup

The proposed approach has been evaluated in the LibriSpeech
ASR corpus [10]. The ASR system has been built using the
transLectures-UPV toolkit [11], which is an open source set
of tools for designing an ASR system from scratch. Acoustic
models have been trained using the train-clean-100 LibriSpeech
subset (100 hours). They consist of an hybrid HMM-DNN built
on top of MFCC-CMLLR features. The DNN has been trained

with a context window of 11 frames, 7 hidden layers with ReLu
activation functions and 2048 units each. The number of target
tied-states accounts for a total of 8132. As language model, we
have used the pre-built 4-gram provided by the authors in the
release of the corpus.

The official dev-other and test-other subsets of the Lib-
riSpeech corpus have been used to adjust and evaluate CE mod-
els in a speaker-independent (SI) fashion. Also, 50h from the
train-other-500 LibriSpeech subset were randomly selected for
the training of the SI CE models. The main statistics of this
experimental setting can be found in Table 1.

Table 1: Statistics of the speaker-independent setting.
Set Duration (h) Words Vocab WER

Train 49 475K 27K 15.6
Dev 5.3 51K 7K 21.2
Test 5.1 52K 8K 23.1

Additionally, 20 speakers not used in the SI experiments
were randomly selected from the train-other-500 subset in or-
der to evaluate speaker adaptation of the SI CE models. Spe-
cific training, development and test subsets were built for each
speaker using their own speech data. Global statistics of this
speaker-dependent (SD) setting are shown in Table 2.

Table 2: Statistics of the speaker-dependent setting.
Set Duration (h) Words Vocab WER

Train 5.9 54.9K 8.6K 26.2
Dev 2 19.1K 4.6K 26.3
Test 2 19.3K 4.6K 25.5

It is worth mentioning that all the speakers in LibriSpeech
have almost the same amount of speech so as not to suffer from
unbalanced speaker data. Therefore, in our SD partition, there
is almost the same amount of data for each speaker in order to
adapt, adjust parameters and evaluate.

3.2. Evaluation metrics

We have used three metrics to evaluate the performance of the
CE classifiers: the area under a ROC curve (AUC), the clas-
sification error rate (CER) and the normalized cross entropy
(NCE).

Let us assume that ASR output results inC correctly recog-
nized words and I mis-recognized words. Let False Rejection
be the number of correctly recognized words with confidence
lower than a decision threshold τ (FR(τ)) and, equivalently,
let True Rejection be the number of mis-recognized words with
confidence lower than τ (TR(τ)). The False Rejection Rate
(FRR(τ )) and the True Rejection Rate (TRR(τ )) for a decision
threshold τ are computed as:

FRR(τ) =
FR(τ)

C
TRR(τ) =

TR(τ)

I
(7)

A Receiver Operating Characteristic (ROC) curve repre-
sents TRR(τ ) against FRR(τ ) for different values of τ . The
AUC provides an adequate overall estimation of the classifica-
tion accuracy, being 100 a perfect classification and 50 a ran-
dom classification (diagonal ROC curve).
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The Classification Error Rate (CER) for a decision thresh-
old τ is computed as:

CER(τ) =
FR(τ) + (I − TR(τ))

C + I
· 100 (8)

A baseline CER can be computed by classifying all the
words as correct (i.e. τ = 1):

CER(1) =
I

C + I
· 100 (9)

Clearly, τ = 1 is not necessarily optimal in the sense of
minimizing Eq. (8). Therefore, it is convenient to consider the
classification threshold τ = τ∗, which minimizes the CER cri-
terion (usually that which provided the minimum CER in a de-
velopment set):

τ∗ = argmin
τ

CER(τ) (10)

The Normalized Cross Entropy (NCE) is defined as the av-
erage log distance of the score to the real class. It attains its
maximum of 1 when the system provides perfect confidence
measures, that is, 0/1 values allowing us to perfectly discrimi-
nate between correctly and incorrectly recognized words.

3.3. Results

As was mentioned in Section 2, a part of the input features of the
LSTM Network are extracted from an ASR word-lattice. In the
experiments, we used 5 word-lattice based features commonly
used in CE [3]:

• SP: Word Acoustic log-score per time frame (10ms).

• D: Duration (in ms) of the word.

• NL: Length of the N-gram in which the word was de-
coded.

• PAvg: Word posterior probability computed as the aver-
age of frame-based posteriors [12].

• PMax: Like PAvg but using the maximum instead of the
average [12].

On the other hand, a global word vector was obtained for
SI and SD experiments, respectively, using the training data of
each experimental setting. The optimal size of the word vectors
was evaluated on the SI development set. Particularly, different
vector sizes were explored, establishing the number of training
epochs and window size during the global word vector model
training. The best result was reached training during 30 epochs
with a window size of 15 and a vector dimension of 30.

Regarding the network topology, different models were
built using several types of layers and dimensions with the open
source toolkit “currennt” [13]. All of them were tested on the
development set and, finally, the best topology corresponded
with a network with 2 hidden layers (BLSTM and LSTM) of
64 units each. This network architecture corresponds to that of
Fig. 1.

Table 3 summarizes the results obtained using the SI experi-
mental setting in terms of the different metrics presented in Sec-
tion 3.2. The performance of the LSTM network is evaluated
comparatively with respect to conditional random fields (CRF)
and naı̈ve Bayes (NB), which have shown to achieve very com-
petitive results in CE [2, 14]. The experiments with CRF have
been carried out using the Wapiti toolkit [15]. The best CRF

Table 3: Results on the speaker-independent test-set.

AUC CER NCE
Baseline −− 20.66 -
NB 84.4 16.54 -0.03
CRF 86.8 15.30 0.31
LSTM 88.3 14.58 0.35
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Figure 2: ROC curves on the speaker-independent test-set.

models were obtained using the training algorithm rprop- and
modelling dependencies between consecutive words.

As can be seen, LSTM models significantly achieve the
best performance in terms of AUC, CER and NCE. LSTM net-
works stated a relative improvement of 4.7% in terms of CER
with respect CRF. This statement is confirmed in Fig. 2, where
the LSTM network outperforms consistently (for all decision
thresholds τ ) the rest of the classifiers. For instance, given an
FRR of 20%, the LSTM classifier is the only one which can
provide a TRR above 80%.

The evaluation of the speaker-adaptation technique pro-
posed in Section 2 is shown in Table 4. This table summa-
rizes the results obtained by different experiments using the
SD experimental setting. First, the non-adapted LSTM network
used in the SI experiments was evaluated in order to establish
a baseline performance. Second, starting from this non-adapted
LSTM network, we trained a speaker-adapted LSTM network
per speaker applying a few more training iterations using the
BPTT algorithm with the data of each speaker. It is worth men-
tioning that the global word vector model was re-estimated so as
to take into account the new speaker vocabulary along with the
vocabulary from the SI experimental setting. Finally, a linear
interpolation between both models (non-adapted and speaker-
adapted) was evaluated. The optimal weights of interpolation
were estimated using the development set.

Table 4: Results on the speaker-dependent test-set.

AUC CER NCE
Baseline −− 21.83 -
CRF 87.4 15.82 0.33
CRF+spkadapt 87.6 15.56 0.34
LSTM 89.3 14.48 0.38
LSTM+spkadapt 89.6 14.42 0.39
LSTM+spkadapt (interpolated) 90.0 13.81 0.41
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Figure 3: ROC curves on the speaker-dependent test-set.

As shown, the model interpolation results in the best model
giving a relative improvement of 4.6% in CER with respect
to the non-adapted model. This result is confirmed in Fig. 3,
where the speaker-adapted model outperforms for any thresh-
old τ their non-adapted counterpart. From our point of view,
this final approximation has performed better because it has ef-
fectively prevented overfitting. This overfitting effect is usual
when huge models such as LSTM networks are trained with
scarce data, which is the case of adaptation to a single speaker.

For further analysis, Table 5 summarizes the performance
of the interpolated model per speaker. In general, it can
be stated that speaker-adapted models outperform their non-
adapted counterparts in all cases in AUC, CER or both, except
for speakers 4487 and 5248. For these two speakers, the adapted
model achieves slightly worse CER. This could be produced by
a particular vocabulary setting, quality of the adaptation data or
a speaker-adapted system overfitting that could not be avoided
with the interpolation.

Table 5: Results on the speaker-dependent test-set per speaker.

AUC CER
SPK ¬Adapt Adapt R. I. ¬Adapt Adapt R. I.
644 88.7 90.1 1.6 17.8 16.6 6.7
778 88.9 89.7 0.9 12.7 11.3 11.4
1065 88.0 88.3 0.3 14.0 13.1 6.3
1085 87.3 87.3 0.0 13.8 13.7 0.7
1544 89.9 89.8 0.0 11.9 11.2 5.5
3318 91.0 92.4 1.5 13.1 12.3 6.5
3793 92.0 92.7 0.8 12.8 11.9 7.0
3798 92.3 92.9 0.7 11.1 9.2 16.3
3992 90.8 90.8 0.1 11.3 10.9 4.1
4034 88.2 89.1 1.0 13.2 13.1 0.7
4487 87.9 88.6 0.8 13.8 14.3 -3.7
4546 86.7 87.5 0.9 12.3 11.7 4.9
5136 91.5 92.5 1.2 13.8 11.7 15.3
5248 86.9 87.2 0.3 16.1 16.2 -0.6
5993 89.4 90.1 0.7 10.4 10.4 0.0
6353 88.7 90.3 1.9 17.1 15.2 11.3
7389 91.7 92.6 1.0 12.5 11.7 6.5
7597 90.0 90.4 0.5 13.3 13.1 1.6
8042 84.8 85.3 0.6 20.2 19.7 2.5
8356 86.7 87.2 0.6 15.5 15.0 3.1

4. Conclusions and Future Work
In this work, we have presented speaker-adapted confidence es-
timation using LSTM Networks. The use of LSTM Networks
along with speaker-adaptation techniques constitutes a novelty
in word confidence estimation. The results obtained over a pub-
licly available dataset such as LibriSpeech confirm that LSTM
networks improve state-of-the-art word confidence estimation
models such as conditional random fields. Particularly, LSTM
networks are able to produce relative reductions in CER of
4.7%. Moreover, the best speaker-adaptation technique pre-
sented is able to further reduce CER in 4.6%.

As future work, we plan to explore different word-
embedding approaches. Also, we plan to study adaptation tech-
niques for the (nearly) unsupervised case.

5. Acknowledgments
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 287755 (transLec-
tures) and ICT Policy Support Programme (ICT PSP/2007-
2013) as part of the Competitiveness and Innovation Framework
Programme (CIP) under grant agreement no. 621030 (EMMA),
the Spanish MINECO Active2Trans (TIN2012-31723) and EC
FEDER Spanish MINECO MORE (TIN2015-68326-R) re-
search projects.

6. References
[1] H. Jiang, “Confidence measures for speech recognition: A sur-

vey,” Speech Communication, vol. 45, no. 4, pp. 455–470, 2005.

[2] A. Sanchis, A. Juan, and E. Vidal, “A Word-Based Naı̈ve Bayes
Classifier for Confidence Estimation in Speech Recognition,” Au-
dio, Speech, and Language Processing, IEEE Transactions on,
vol. 20, no. 2, pp. 565–574, 2012.

[3] I. Sanchez-Cortina, J. Andrés-Ferrer, A. Sanchis, and A. Juan,
“Speaker-adapted confidence measures for speech recognition of
video lectures,” Computer Speech & Language, vol. 37, pp. 11–
23, 2016.

[4] K. Kalgaonkar, C. Liu, Y. Gong, and K. Yao, “Estimating confi-
dence scores on asr results using recurrent neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 4999–5003.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” Neural Networks,
IEEE Transactions on, vol. 5, no. 2, pp. 157–166, 1994.

[7] P.-S. Huang, K. Kumar, C. Liu, Y. Gong, and L. Deng, “Pre-
dicting speech recognition confidence using deep learning with
word identity and score features,” in Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 7413–7417.

[8] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global
vectors for word representation.” in EMNLP, vol. 14, 2014, pp.
1532–1543.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Cognitive modeling,
vol. 5, no. 3, p. 1, 1988.

[10] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 5206–5210.

3467
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