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Abstract
In this paper, we propose a method to predict the articula-
tory movements of phonemes that are difficult for a speaker
to pronounce correctly because those phonemes are not seen
in the native language of that speaker. When one wants to
predict the articulatory movements of those unseen phonemes,
since he/she has difficulty to generate those sounds, the con-
ventional acoustic-to-articulatory mapping cannot be applied as
it is. Here, we propose a solution by using the speech struc-
ture of another reference speaker who can pronounce the un-
seen phonemes. Speech structure is a kind of speech feature
that represents only the linguistic information by suppressing
the non-linguistic information, e.g. speaker identity, of an in-
put utterance. In the proposed method, by using the speech
structure of those unseen phonemes and other phonemes as con-
straint, the articulatory movements of the unseen phonemes are
searched for in the articulatory space of the original speaker.
Experiments using English short vowels show that the averaged
prediction error was 1.02 mm.
Index Terms: acoustic-to-articulatory mapping, Gaussian mix-
ture model, speech structure, pronunciation training system

1. Introduction
Articulatory movements play an important role of creating
phoneme characteristics in voices in a process of speech pro-
duction. Therefore studies of articulatory movements cover
many research topics both of engineering fields and scientific
fields. Among these topics, speech training systems based on
measuring or estimating articulatory movements have drawn re-
searchers’ attention as their potential is very high in language
learning or speech therapy [1][2].

These training systems may provide learners with visual
feedback of two kinds of articulatory movements, one is those
of a learner or client and the other is those of his/her teacher or
therapist. Users of these systems can correct mispronunciations
intuitively by comparing their own articulatory movements with
target articulatory movements [3]. In this situation, it would be
ideal that those two articulatory movements should be visual-
ized in the user’s articulatory space for easy comparison. Here,
the target articulatory movements are those which could be re-
alized by the user himself when he improves his speaking skills.
In language learning, for example, the target of speech training
often includes phonemes that are not seen in the native language
of a learner. Hence, the target articulatory movements are gen-
erally difficult to measure in a learner’s articulatory space.

In this paper, we aim to predict those unseen articulatory
movements in that learner’s space. Acoustic-to-articulatory
mapping has been studied to predict articulatory movements
only from speech signals [4]. Generally speaking, the tech-
nique requires speech signals of a speaker of interest as in-

puts. Therefore, the conventional acoustic-to-articulatory map-
ping technique cannot be applied directly to unseen phonemes.
In the proposed method, we use another speaker, teacher or
therapist, who can pronounce those phonemes correctly. From
that speaker, speech structure is extracted which includes those
phonemes. Speech structure is a speech feature representing
only the linguistic aspect of speech where its non-linguistic as-
pect such as speaker identity is effectively suppressed or re-
moved. Here, a given utterance, i.e. a sequence of speech
events such as phonemes, is represented only as distance matrix
among those events, where event-to-event distance is measured
as f -divergence. Since f -divergence is transform-invariant [5],
the distances are regarded as speaker-invariant. In the pro-
posed method, we extract a speech structure including the un-
seen phonemes from a reference speaker and use it as constraint
when predicting the target articulatory movements in the origi-
nal speaker’s articulatory space.

2. Prediction of unseen articulatory
movements

2.1. Speech structure [6]

Acoustic features of speech signals vary easily depending on
their non-linguistic factors such as age and gender of the
speaker and channel characteristics of transmission. Speech
structure was proposed to remove those non-linguistic biases
and extract only the linguistic aspect of speech signals [6].
Acoustic variation due to non-linguistic factors can be classi-
fied into two types. In the cepstrum domain, one is additive,
c′ = c + b, and the other is multiplicative, c′ = Ac [7]. Mi-
crophone difference is a good example for the former and vo-
cal tract length difference is for the latter. Generally speaking,
static and non-linguistic variation can be approximated as linear
transformation of c′ = Ac+ b.

In structural analysis of speech, a speech sequence is con-
verted at first to a sequence of feature distributions, which may
correspond to speech events such as phonemes. Between any
pair of events, Bhattachartyya distance (BD) is calculated and
the resulting distances can form a distance matrix. This matrix
is the speech structure of this utterance (see Figure 1).

Let p1(x) and p2(x) be probability density functions of
two speech events in the cepstrum space. BD, which is one of
f -divergences, between the two speech events is

BD(p1, p2) = − ln

∫ ∞

−∞

√
p1(x)p2(x)dx. (1)

If both p1(x) and p2(x) follow Gaussian, p1(x) ∼ N (μ1,Σ1)
and p2(x) ∼ N (μ2,Σ2), Eq.1 becomes

BD(p1, p2) =
1

8
μ�12V
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1
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. (2)
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Figure 1: Speech structure

Figure 2: Speech generation using a speech structure

Figure 3: Prediction of articulatory movements using speech
structure

Here, μ12 isμ1−μ2 and V12 is Σ1+Σ2
2

. Mathematical proper-
ties of BD claim that BD between p1 and p2 is invariant against
any kind of linear transform. Hence, the speech structure can be
used as transform-invariant or speaker-invariant representation
of speech. It should be noted in Figure.1 that, since a speech
structure is just a distance matrix, it loses information about the
positions of the events in the acoustic space where their struc-
ture is formed. In other words, the speech structure is a very
abstract representation of speech.

2.2. Speech generation using a speech structure [8]

Speech generation derived from a given speech structure has
been studied [8]. As told above, only with a structure, no event
can be realized in an acoustic space as audio signals. To locate
an event or a node of a given structure in the acoustic space, ad-
ditional constraints have to be given. For example, if physical
properties of a speaker are given, a speech structure may be able
to be converted to that speaker’s acoustic events, i.e. voices, of
the linguistic message represented by the structure. In [8], how-
ever, instead of giving physical properties of a speaker, the ab-

solute positions of some events are given in the acoustic space,
and those of the remaining events were predicted. For example,
in the speech structure of Figure 1, the positions of nodes 1, 2,
3, and 4 were given and, using these nodes as anchors and the
distance matrix among the five nodes as constraints, the position
of the 5-th node was predicted.

Suppose that we have a teacher and a learner. The teacher
can pronounce all the five phonemes correctly but the learner
can pronounce only phonemes 1 to 4. Since a speech structure
excludes static speaker biases, by applying the teacher’s speech
structure to the learner’s speech sounds of phonemes 1 to 4, the
learner’s speech sound of phoneme 5 can be predicted [9]. Here,
the learner’s speech sounds of phonemes 1 to 4 are used as an-
chors and the teacher’s speech structure is used as constraint for
prediction1 (see Figure 2). Hereafter, a teacher is called ref-
erence speaker and a learner is called target speaker. Further,
phonemes 1 to 4 are called anchor phonemes and phoneme 5
is a target phoneme. In [9], this prediction problem was math-
ematically formulated as minimization problem. The (position
of) feature distribution of phoneme 5, p̂5, in the target speaker’s
acoustic space can be obtained as

p̂5 = argmin
p5

4∑
n=1

{BD(t)(p5, pn)− a
(r)
5,n}2. (3)

pn is the feature distribution of phoneme n in the target
speaker’s acoustic space. a(r)

5,n is BD between phoneme 5 and
phoneme n in the reference speaker’s acoustic space.

2.3. Prediction of unseen articulatory movements of
a speaker using the speech structure of another speaker

We apply our previous method [9] to the current problem of pre-
dicting the articulatory movements of unseen phonemes. The
unseen articulatory movements are searched for by using the
speech structure of a reference speaker and the acoustic anchors
of a target speaker. Different from [9], what has to be predicted,
articulatory movement, is not in the same space of the anchors.
By using the articulatory-to-acoustic mapping function, which
was estimated in advance by using a parallel data of the target
speaker, an articulatory movement x of the target speaker can
be mapped to its corresponding acoustic observation (see Fig-
ure 3). Here, the result of mapping is denoted as F(x). Using
x and F(x), the current problem of predicting the articulatory
movement x̂ of unseen phoneme 5 can be formulated as

x̂ = argmin
x

4∑
n=1

{
BD(t)

(
N (F(x),Σ), pn

)
− a

(r)
5,n

}2

(4)

(
= argmin

x
J(x)

)
. (5)

Here, it is assumed that a common variance and covariance ma-
trix is shared among all the kinds of sounds and the acoustic
feature distribution follows Gaussian. It should be noted that
articulatory variable x is varied to minimize the structural dif-
ference between the two speakers, whose structures are calcu-
lated in the acoustic spaces of both speakers. Mapping between
the two spaces is modeled as function F .

We employ Gaussian mixture model-based (GMM-based)
articulatory-to-acoustic mapping [4] for transform function F .
Let x ∈ Rdx and y ∈ Rdy be articulatory and acoustic pa-
rameter vectors whose dimensions are dx and dy , respectively.

1For simplicity, we explain our approach by using 4 anchors and 1
target. But it can be generalized for any anchors and any targets.
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z denotes a joint vector consisting of articulatory and acoustic
parameters as z = [x�,y�]�. The probability density of the
joint vector is modeled by using a GMM as follows:

P (z;λ(z)) =
∑M

m=1 αmN (z;μ
(z)
m ,Σ

(z)
m ), (6)

μ
(z)
m =

[
μ

(x)
m

μ
(y)
m

]
,Σ

(z)
m =

[
Σ

(x,x)
m Σ

(x,y)
m

Σ
(y,x)
m Σ

(y,y)
m

]
. (7)

λ is model parameters. N (·;μ,Σ) is a normal distribution with
a mean vectorμ and a covariance matrixΣ.M is the total num-
ber of mixture components and α is a weight parameter. The
parameter mapping function using the GMM is derived from

ŷ = argmax
y

P (y|x;λ(z)). (8)

The MMSE-based mapping function is represented as follows:

ŷ =
M∑

m=1

P (m|x,λ(z))(μ(y)
m +Σ(yx)

m Σ(xx)−1

m (x− μ(x)
m )). (9)

Eq.(9) is employed for transform function F for Eq.(4). By
approximating P (m|x,λ(z)) of Eq.(9) by a constant value,
Eq.(9) can be represented as a linear transformation of x and
can be integrated simply to Eq.(4).

2.4. Normalization of speech structure

The proposed method uses a(r)
5,n and their corresponding BDs

of the target speaker, a(t)
5,n (1 ≤ n ≤ 4). It is also implic-

itly assumed that a(r)
l,m and a(t)

l,m (1 ≤ l,m ≤ 4) are the same.
According to [10], it is known that the structural features of a
speaker and those of another can vary due to dialectal variation
or accent variation. This may be the case in our study. In other
words, some differences could be found between a(r)

l,m and a
(t)
l,m.

To cancel these differences, accent normalization should be in-
troduced between the reference speaker and the target speaker.
This normalization process should be introduced also to a(r)

5,n.
Let A(r) = {a(r)

i,j }1≤i,j≤4 and A(t) = {a(t)
i,j}1≤i,j≤4 be

the distance matrices of the reference speaker and the target
speaker, respectively. As told above, some differences could
be found between them. Normalization for A(r) is done by
modifying A(r) into SA(r)S, where S is a diagonal ma-
trix diag{s1, s2, · · · , s4}. The (i, j) element of SA(r)S is
sisja

(r)
i,j . S is determined based on the following:

Ŝ = argmin
S

3∑
i=1

4∑
j=i+1

(sisja
(r)
i,j − a

(t)
i,j )

2 (10)

= diag{ŝ1, ŝ2, · · · , ŝ4}. (11)

The above minimization is done by using a
(r)
i,j and a

(t)
i,j in the

range of 1 ≤ i, j ≤ 4. If this normalization is applied also to
a
(r)
5,n, then, it is modified to ŝna

(r)
5,n.

3. Experiments
3.1. Conditions

To evaluate the performance of our proposed prediction
method, we conducted experimental evaluations usingMOCHA
database [11]. This database includes acoustic-articulatory par-
allel data of one male speaker and one female speaker. In the
experiments, either of the two was used as a target speaker and

the other was a reference speaker. Articulatory data were mea-
sured by an electromagnetic articulography, where its sensors
were placed at 7 points of articulators (lower incisor, upper
and lower lips, 3 points on a tongue, velum) in the mid-sagittal
plane. The articulatory data of each point are two-dimensional
data of horizontal and vertical directions. The sentences read by
the two speakers are 460 sentences extracted from TIMIT. The
temporally-detailed transcriptions are included.

In the experiments, we focused on eight kinds of short
vowels included in MOCHA (@, a, e, i, iy, o, u, and ah).
One of those vowels was used as an unseen phoneme (tar-
get phoneme) and the others were used as anchors (anchor
phonemes). To predict the articulatory movements of the target
phoneme, the following conditions were adopted. The speech
structure among the target phoneme and the anchor phonemes
was extracted from acoustic data of the reference speaker. Here,
each phoneme distribution was modeled as Gaussian distribu-
tion, a variance-covariance matrix of which was a diagonal ma-
trix. In the same way, the distribution of each anchor phoneme
of the target speaker was modeled using acoustic data of the
target speaker. Articulatory-to-acoustic mapping model was
developed with acoustic-articulatory parallel data of the target
speaker. It should be noted, however, that segments of the target
phoneme were eliminated from the parallel data.

To validate the articulatory movements predicted by our
proposed method, their corresponding ground truth has to be
prepared. For that, we assumed the Gaussian distribution for
articulatory data of the target phoneme produced by the target
speaker. For validation, only the mean vector was examined.

As for conditions of acoustic analysis, 24-dimensional mel-
cepstrum (C1∼C24) was used as acoustic features and articula-
tory data which was orthogonalized via PCA was used as artic-
ulatory features.

When searching for the target movement, we employed the
steepest descent method to minimize the cost function J(x)
of Eq.(5). This minimization procedure requires the initial
value of x. In the reference speaker’s acoustic space, the tar-
get phoneme and all the anchor phonemes are present and the
anchor phoneme that is the closest to the target phoneme can
be detected. The detected anchor phoneme is also found in the
target speaker’s articulatory space. The mean vector of this
detected phoneme was adopted as initial vector of x. Our pre-
liminary experiments showed that, if Eq.(5) was used as it is,
since Eq.(5) did not constrain the region where x can vary, the
optimal x can be a vector that is found outside the region of
articulatory movement. To solve this, we introduced two con-
straint terms to J(x) as follows:

J ′(x) = J(x) + α1(x− x0)
�Σ−1(x− x0)

+ α2(x− xc)
�Σ−1(x− xc). (12)

Here, x0 is the initial vector, xc is the averaged vector over
all the anchor phonemes in the articulatory space of the target
speaker, and Σ is the shared variance-covariance matrix in the
target speaker’s articulatory space. The second term of J ′(x)
restricts the space for searching only to the region around the
closest target phoneme and the third term restricts it only to the
region around the averaged vowel. α1 and α2 are weighting
factors to the original cost function J(x).

3.2. Results

Figure 4 shows the prediction error of each target phoneme.
Since MOCHA has two speakers (male and female), the pre-
diction experiment can run in four conditions and all the four
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Figure 4: Prediction errors of each target phoneme in four different conditions

Table 1: RMSE(Ave.(mm))
Reference Target Search Search-normalized
female female 1.01
male female 1.22 1.18
male male 0.70
female male 0.93 0.86

results are shown. In the figure, ‘Search’ shows the root-mean-
square error (RMSE) between the predicted and measured artic-
ulatory movements. Here, RMSE is obtained by calculating the
prediction error for each of the seven positions and averaging
those errors over the seven positions. ‘Ave.’ means the average
of RMSE for all target phonemes. For comparison, RMSEs be-
tween the initial vectors of x0 and measured articulatory move-
ments are also shown as ‘Initial’. Normalization of the speech
structure was introduced only to the cases where the reference
speaker and the target speaker were assigned to two different
speakers. Results are shown as ‘Search-normalized’.

If we focus only on Ave., we can see that prediction er-
rors of ‘Search’ are lower than those of ‘Initial’ in all cases.
These results clearly show that the predicted positions of the tar-
get phonemes in the target speaker’s articulatory space is more
valid rather than substituting the positions of the closest anchor
phoneme.

There is one exception, that is /iy/. We can see that RMSEs
of ‘Search’ are larger than those of ‘Initial’ in all cases. This
is considered to be because of the third term of Eq.(12), which
poses a penalty if x is located distant from the central vowel.

Among the eight vowels, /iy/ is known to have the longest dis-
tance from the central vowel.

Table 1 shows the values of Ave. for each case. We can see
in the column of ‘Search’ that prediction errors increase when
the two speakers are assigned to reference and target. This will
be due to the influence of difference of the speech structure be-
tween the target speaker and the reference speaker. In the col-
umn of ‘Search-normalized’, however, RMSEs are effectively
reduced by structural normalization.

4. Conclusions
In this paper, we proposed the prediction method of the artic-
ulatory movements of unseen phonemes of a speaker using the
speech structure of another speaker. In the proposal method,
by using the speech structure, which is extracted from another
speaker, among the unseen phonemes and other phonemes as
constraint, the unseen articulatory movements are searched. To
evaluate the performance of the proposal prediction method, we
conducted experimental evaluations focusing on English short
vowels. As a result, effectiveness of the proposed prediction
method was shown. For future works, we will apply the pro-
posed methods to continuous speech.
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