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Abstract

The newly collected Speakers in the Wild (SITW) database
was central to a text-independent speaker recognition challenge
held as part of a special session at Interspeech 2016. The SITW
database is composed of audio recordings from 299 speakers
collected from open source media, with an average of 8 sessions
per speaker. The recordings contain unconstrained or “wild”
acoustic conditions, rarely found in large speaker recognition
datasets, and multi-speaker recordings for both speaker enroll-
ment and verification. This article provides details of the SITW
speaker recognition challenge and analysis of evaluation results.
There were 25 international teams involved in the challenge of
which 11 teams participated in an evaluation track. Teams were
tasked with applying existing and novel speaker recognition al-
gorithms to the challenges associated with the real world condi-
tions of SITW. We provide an analysis of some of the top per-
forming systems submitted during the evaluation and provide
future research directions.

Index Terms: speaker recognition, speakers in the wild
database, evaluation

1. Introduction

Evaluations provide a means of assessing the state of a certain
technology across a number of groups that are working on a
task. They provide the community of researchers in the area
with a set of results against which to compare technology. They
also motivate research to solve the specific problems posed by
the evaluation data. Years after the evaluation is held, groups
might still be trying to work on the problems associated with the
data. By using a common evaluation dataset, evaluations allow
comparison of results across publications, and the progress of
performance on that data can be tracked throughout time.

For speaker recognition, the main evaluations that have
been guiding a large part of the research on this task for two
decades are the ones held by the National Institute of Standards
and Technology (NIST) [1]. These evaluations have occurred
every one or two years since 1996. They have evolved from
using only telephone data to using additional microphone data
from a variety of different microphones, telephone conversa-
tion and interview speaking style, different induced vocal ef-
forts (low, normal and high), simulated noisy data (created by
adding noisy signals to clean signals), and real noisy data col-
lected from noisy environments. Some of these evaluations also
included a “summed” condition in which the two channels of a
telephone conversation or an interview were added together to
create a multi-speaker recording which was then used in testing
to determine whether a certain enrolled speaker was present in
the recording. See [2] for a review of the NIST speaker recog-
nition evaluation (SRE) series from 1996 to 2014.

While NIST speaker recognition evaluations provide great
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value to the community, they have focused on relatively con-
trolled data. Although some challenging acoustic conditions
have been explored, the dimensions of variability are re-
stricted. This restriction facilitates the understanding of partic-
ular strengths or shortcomings of evaluated technology. How-
ever, these evaluations provide little insight into the perfor-
mance of technology when applied to data collected in less con-
strained scenarios, such as open-source media in which multiple
audio degrading artifacts are often convolved.

These observations motivated us to work on the collec-
tion and annotation of a new database which could fill in
some of the gaps presented by the data used in NIST speaker
recognition evaluations. As a result, we created the Speak-
ers in the Wild (SITW) database [3], a new database designed
for text-independent speaker recognition. The database con-
sists of audio recordings from open source media and con-
tains a wide variety of acoustic conditions, including real back-
ground noise, reverberation, compression artifacts and large
intra-speaker variability. Furthermore, the database contains au-
dio segments that include multiple speakers: some in interview
or dialog situations, and some in more uncontrolled scenarios
where multiple speakers might be involved. Multi-speaker au-
dio is not only used for testing, but also enrollment with the aid
of a small annotation.

In 2016, SRI organized a speaker recognition challenge
based on the SITW database. A total of 25 international teams
from 18 different countries participated in the challenge to eval-
uate technology on the database. As part of the challenge, an
optional evaluation was held in which 11 of the teams partici-
pated. These teams submitted a description of their efforts for
the evaluation to the challenge organizers (the authors of this ar-
ticle). In this work, we provide a summary of these submissions
to draw attention to how current technology fairs on the SITW
database and provide future research directions. We anticipate
the results and publications that result from the challenge and
the corresponding database, which is publicly available for re-
search purposes, will motivate the community to spend time and
effort trying to solve some of the challenges that still remain in
the speaker recognition task.

2. The SITW Evaluation

The SITW evaluation was based on the SITW database [3]. The
SITW database aims to provide a large collection of real world
data that exhibits speech from individuals across a wide array
of challenging acoustic and environmental conditions. Addi-
tionally, SITW includes multi-speaker audio from quiet set in-
terviews, noisy red-carpet interviews, reverberant question and
answer sessions in an auditorium, and more casual conver-
sational multi-speaker audio in which backchannel, laughter,
and overlapping speech is observed. Each individual also has
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raw, unedited camcorder or cellphone footage in which they
speak. This footage potentially contains other speakers and
(often) spontaneous noises. The audio of the SITW database
was extracted as partial excerpts of the audio track from open-
source media (videos). The data was not collected under con-
trolled conditions and thus contains real noise, reverberation,
intraspeaker variability and compression artifacts.

The evaluation consisted of two enrollment and two test
conditions. The enrollment conditions were: (1) core, where
audio files contain 6 to 180 seconds of contiguous speech from
a single speaker; and (2) assist, where the audio files contain
speech from one or more speakers, including the speaker of in-
terest. In the assist case, the recordings contain anywhere from
6 seconds to more than an hour of speech from the speaker of
interest. For this condition, a small annotation, or “seed,” is pro-
vided to indicate a region where the speaker of interest has been
verified to be speaking. This seed is used to assist systems in ex-
panding the amount of data that can be used for enrollment. The
two test conditions were: (1) core, where the audio files have
the same characteristics as the core ones in enrollment; and (2)
multi, where the audio files contain one or more speakers, one
of which might be the speaker of interest. If so, the amount of
speech from that speaker can be approximately from 6 seconds
to 10 minutes. Note that the multi test samples do not coincide
with the assist enroll samples due to differences in the design
criteria for these two sets (see [3] for details).

Four evaluation conditions were created by combining each
enrollment with each test condition'. These trial conditions are
denoted as enroll-test (i.c., core-multi denotes the core enroll-
ment and multi test trial condition). Cross-gender trials were
included in all conditions. The SITW database was split in
two sets for the purpose of the evaluation: a development set
and an evaluation set. Sets were disjoint in terms of speakers,
with 2,597 target and 335,629 impostor trials from 119 unique
speakers in the development set and 3,658 target and 718,130
impostor trials from 180 unique speakers in the evaluation set.
The evaluation trial set included approximately 11% female and
45% male same-gender trials, and 44% cross-gender trials.

The rules of the evaluation were quite standard: (1) any
publicly available or previous NIST SRE data could be used for
training the system, including the SITW development data; (2)
enrollment of speaker models had to be treated independently
of all other available data; (3) participants had to submit a score
(rather than a decision) for each trial, and those scores were
treated as log-likelihood ratios for performance computation;
and (4) only the core-core condition was compulsory, and sites
could choose to submit to the alternate conditions.

The primary metric for the evaluation was a standard Cget,
as used in all NIST SREs, with costs of 1 for both errors and a
probability of target of 0.01. The C4e+ was computed by thresh-
olding the scores provided by the participants at the theoreti-
cally optimal threshold for these costs (4.59). Participants were
provided a scoring script that also computed the minimum Clget,
Chir and average Rprec OF Rprec. For details on these metrics,
please refer to [3].

3. Evaluation Results

In this section, we show overall evaluation results for all teams,
as well as some more detailed analyses of subconditions. The

ITwo more conditions in the eval plan corresponded to a subset of
the assist enrollment condition which contained only clean data for en-
rollment. Here, we consider those conditions as subsets of the main
assist-core and assist-multi conditions.
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Table 1: Results for the best submission from each of the sites
for each condition. Darker green indicates a better systems.

Cond Site Caet minCge, aveR, . EER Clir
1 051 0.50 0.75 0.059 0.21
2 0.65 0.60 0.66 0.087 0.29
3 0.65 0.64 0.64 0.077 0.34
4 0.76 0.74 0.54 0.114 0.38
5 0.84 0.84 0.47 0.119 0.59
core-core 6 0.87 0.86 0.42 0.160 0.51
7 0.88 0.87 0.41 0.145 1.55
8 0.92 0.92 0.35 0.166 0.51
9 0.94 0.93 0.52 0.121 0.42
10 1.00 1.00 0.09 0.244 -
11 1.60 0.95 0.36 0.173 0.78
core-multi 1 0.58 0.57 0.66 0.073 0.31
assist-core 1 0.40 0.40 0.75 0.045 0.17
3 0.54 0.53 0.66 0.064 0.32
assist-multi 1 0.47 0.46 0.72 0.057 0.24

goal of showing these results is to set a baseline performance for
the SITW trial conditions and highlight some challenges present
in this data. Given the complexity of this dataset, the analysis is
not always straightforward, as we will see in many of the results.
Nevertheless, interesting conclusions can still be gathered by
dissecting results in certain ways.

For some results, we show a 95% confidence interval,
which was calculated using a modified version of the joint boot-
strapping technique described in [4]. The modification is per-
formed to account for the fact that many models are created for
each speaker of interest. Having multiple models per speaker,
which might even be enrolled with different snippets from the
same session, introduces a very strong correlation across trials
involving those models. To this end, we simply add another
layer of sampling: speakers are sampled first, then models from
those speakers, then test signals. The models themselves might
be repeated if a speaker was sampled more than once in the
first layer of sampling. The trials corresponding to the selected
subset of models and test signals are then used to compute the
performance metric. We performed the sampling 20 times for
each layer to produce 8000 measurements of the metric. The
confidence interval that is reported corresponds to the 5 and 95
percentiles of the resulting empirical distribution.

3.1. Results for all trial conditions

Table 1 shows the results for the best submission from each of
the 11 sites. As indicated in the evaluation plan, all sites sub-
mitted scores for at least one system for the primary core-core
condition. For the other conditions, only one or two sites sub-
mitted scores. The numbers in the table indicate the site. Note
that even though this number is the same across conditions, that
does not imply that the same system (architecture, parameters,
etc) was run across conditions. In fact, systems varied across
conditions to accommodate the different characteristics in the
trials.

The first observation we can draw from the results is that
the top systems reach impressive performance for this challeng-
ing data, with the best system achieving an EER of less than
6%. Clearly, however, this performance is not easily achiev-
able, since only a handful of systems were able to approach
that level of performance. Interestingly, only the top three sys-
tems leveraged senone Deep Neural Networks (DNN) in their
architecture as in [5] or [6, 7]. The fourth system was based
on a standard UBM/i-vector architecture including source nor-
malization [8] to reduce mismatch between system training and
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Figure 2: Results (Cj;,) for the core-core trials (all), and the
subset of matched-gender trials and gender-dependent trials.

evaluation data sources. Site 2 also utilized source normal-
ization with the SITW development data forming one of the
“sources” in this approach. In the next section we will show
more detailed results for these top four systems. Additional sys-
tem characteristics of interest include Site 1’s use of a phoneme
recognizer for SAD, in contrast to other sites’ use of energy-
based SAD, spectral matching or self-adaptive algorithms. Sites
1, 3, 6, and 7 used the fusion of 2 or 3 subsystems, while others
used a single system. Calibration parameters for Sites 1-9 were
trained directly on the SITW development trial set, while Sites
10 and 11 did not apply calibration.

Note that all conditions include cross-gender trials. This
has the effect of improving performance with respect to a trial
set based only on matched gender trials. For example, for the
top site (first line in Table 1), the Cg4et, EER and Cy,- for
matched-gender trials are 0.578, 0.0768 and 0.285, respectively.
Cli results for matched-gender trials are also shown, along
with confidence intervals in Figure 2. Comparing these results
with those for all trials, we see that the presence of cross-gender
trials (which represent 44% of all trials) makes the task signifi-
cantly easier for this system. Similar improvements can be ob-
served for other top systems.

Most systems had excellent calibration performance, with
values of minimum Cyge; very close to actual Cge¢. This per-
formance is likely due to the fact that the SITW development
data was a good match to the evaluation data and most sites
used this data to calibrate their scores. It is interesting to ob-
serve that the Cj;,-, a metric that measures the quality of the
scores over all possible operating points by assuming them to
be well-calibrated log-likelihood ratios, correlates well with the
Clget for the top systems. These are the systems that are, indeed,
well-calibrated across all operating points, and not just on the
point defined by Clge;.

We can see from Table 1 that the core-multi condition was
more difficult than core-core for the single site that ran both.
Note that the multi test signals include all core (single-speaker)
test segments to allow for analysis of whether the segmentation
of test samples adversely affects single-speaker audio. Due to
a lack of enough submissions involving multi tests, we refrain
from this analysis here. All other test samples include multi-
speaker segments, many of which have short speaker turns,
overlapping speech and other conversational aspects such as
backchannel and laughter. An analysis of these nuisances on the
effect of speaker recognition is yet to be conducted. It is worth
noting that most speaker diarization algorithms have been de-
signed to allocate all detected speech across the automatically-
defined speaker clusters. It would be interesting to tailor these
algorithms toward the speaker recognition task by only retriev-
ing speech that the system can confidently determine as that of
the speaker involved in the trial.
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Figure 3: Results (Cj;,) for the core-core trials (all), and the
test duration-dependent subsets.

The two assist enrollment conditions appear easier than the
corresponding core enrollment conditions. It should be noted,
however, that the comparison in Table 1 is not direct, since the
assist-core speaker models are based on different annotation
lengths, and not all audio used to enroll the core models had
a corresponding assist version. To allow for a direct compari-
son, we created two subset conditions: one where the core-core
trials are subsetted to include only models for which an assist
version exists, and another one where the assist-core trials are
subsetted to include only one model for each session using the
longest possible seed which coincides with the core signal in the
core model set. Both subsets then include an identical number
of comparable trials: the test samples are the same and for each
core model, there is a corresponding assist model that uses the
core snippet as the annotation and includes additional speech.
For Site 1, results for the assist-core subset are better than for
the core-core one. The trend is reversed for Site 3 (results not
shown for lack of space). This means that the gain from the
additional data is not guaranteed, and is most likely dependent
on the quality of the diarization process that is performed to
discard any irrelevant speech in the signal. Broadly speaking,
both sites applied unsupervised speaker diarization on the au-
dio before considering which speaker cluster from diarization
shared the most overlap with the annotation. Further analysis
found limited difference between short and long enrollment an-
notations (5s, 10s, 15s or >15s) when comparing within-site
results. Consequently, we can presume that detection of speech
from the speaker of interest (recall) was adequate to result in
similar enrollment speech. Precision may need to be improved
to ensure the additional speech is only from the speaker of in-
terest in the assist audio.

3.2. Results for subsets of the core-core condition

In this section, we analyze performance on the core-core con-
dition by splitting the trials into different subsets. For this anal-
ysis, we focus on the four top systems from Table 1. These
results are shown in terms of Cj;,, since this is a more general
metric than the actual DCF, which focuses on a single operating
point. While the evaluation keys were designed to discard any
symmetric trials (that is, trials that interchanged enrollment file
with test file), we decided to include these trials in the results
for this section before the trials were subsetted, since subsets
are mostly done in terms of test samples. To this end, we sim-
ply assumed that systems would generate identical scores for
the symmetric trials and, consequently, automatically created
the scores for the missing trials of submitted systems.

3.2.1. Results by gender

Figure 2 shows the results for all core-core trials, for the subset
of matched-gender trials, and for the two gender-dependent sub-
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Figure 4: Results (C};,) for the core-core trials (all) and some degradation-dependent subsets denoted by fype and level.

sets (the matched-gender subset is the union of the two gender-
dependent subsets). Results show that females pose a much
harder challenge to the top systems than males. While the
fact that females usually have worse speaker recognition per-
formance than males is a well-known fact (e.g., [9, 10]), the
difference in this case is somewhat larger than expected. This
seems to be due mostly to poor discrimination power rather than
poor calibration, since the EER (a metric that is independent of
calibration) for the first system is 13.7% for females and 5.8%
for males, with similar relative differences for the other top sys-
tems.

3.2.2. Results by duration

Figure 3 shows the results for all core-core trials and for sub-
sets of these trials where the test files have been binned by their
detected speech duration as detected by our SAD system (de-
scribed in [11]). We can see that the trends by duration are as ex-
pected, with shorter files being significantly harder than longer
files. Interestingly, the degradation seems to saturate after 25
seconds (the last two bins have similar performance) for Sites 1
and 3. It is possible that duration mismatch between enrollment
and test samples is responsible for this trend. Specifically, the
enrolled speaker models have the same speech duration distri-
bution as the test segments with a bias toward 20-25 seconds.
Due to the limited number of trials that result from a model and
test subset required for this analysis, this hypothesis is difficult
to support using the SITW database.

3.2.3. Results by degradation level and type

Figure 4 shows the results for different degradation levels for
three common types of degradation. These degradation types
(noise, reverb, codec) and levels (0-4) were those perceived by
a single human annotator. Test files in this analysis exhibit only
a single degradation type: a small subset of all audio files in the
SITW database, which contains mostly files with multiple types
of degradation. We can see that, for both codec and noise types,
the degradation level is a good predictor of performance: higher
degradation levels imply worse performance. This is not the
case for the reverberation type, for which the degradation level
seems to have no correlation with performance. Interestingly,
the degradation due to the highest level of noise affects the top
system relatively less than the other systems. This system seems
to be especially good at mitigating the effect of noise.

4. Conclusions and future directions

The SITW database, which is freely available for research pur-
poses, provides a new context for the evaluation of speaker
recognition evaluation: real world conditions associated with
audio from open-source multimedia. Based on the submissions
of 11 international research teams, the analysis presented in this
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article has shed light on some of the fundamental issues that re-
main yet unaddressed in the technology, as well as aspects of
the database that require further investigation. We summarize
these here as future research directions.

Perhaps the most obvious factor for further study is the sig-
nificant performance difference observed between male and fe-
male trials in Section 3.2.1. Our preliminary attempts to dissect
these results to determine whether female trials consist of gen-
erally greater degradation, degradation type (i.e., babble instead
of outside noise) or duration have not provided a clear indica-
tion as to why female trials are twice as difficult as male trials.

Assisted enrollment is a new paradigm for many speaker
recognition research groups. Submitted systems utilized unsu-
pervised speaker diarization prior to leveraging the information
of the provided annotation to determine the enrollment speech
for a speaker model. Development of methods that use the an-
notation directly in the segmentation process to target speech of
a known speaker (the annotation of the assist conditions or the
speaker model of a trial), rather than first allocating all speech
to unsupervised speaker clusters, may improve performance for
this speaker recognition task. This approach may be particularly
useful in the context of spontaneous, conversational speech as
exhibited in the SITW audio.

Regarding system design trends, almost all submissions
consisted of energy-based SAD as opposed to the more ad-
vanced, noise-aware SAD that was used in the top perform-
ing submission. Although much of the SITW data was sourced
from interview scenarios which naturally involve a high speech
vs non-speech ratio, simple energy-based SAD may not be the
most appropriate selection to cope with factors such as babble,
background music, and spontaneous noises. Given the uncon-
trolled nature of the SITW audio, we expect robust SAD algo-
rithms such as those developed under the DARPA RATS pro-
gram [12, 13, 14, 15, 16] to be a key component to good perfor-
mance on the SITW data.

Calibration is a key component of any deployed speaker
recognition system. Many teams calibrated using the SITW de-
velopment data which provided a suitable “overall” representa-
tion of the dataset. However, as the trial conditions are far from
homogeneous, calibration methods that dynamically take into
account trial conditions [17, 18] can be expected to improve
on a simple calibration model (shift and scale) when a single
threshold is applied (Cyget), or calibration across all operating
points is considered (C;).

In this article we have tried to indicate trends across sub-
missions and draw conclusions where statistical significance
between systems exists. As future research is pursued on the
SITW database, we recommend that care be taken when at-
tempting to dissect results and draw conclusions from trial sub-
sets, since conditions are often biased toward or dependent on
one another due to the nature of real world data.
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