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Abstract 

This article presents an experimental comparison of two types 

of techniques, articulatory and acoustic, for transforming non-

native speech to sound more native-like. Articulatory 

techniques use articulators from a native speaker to drive an 

articulatory synthesizer of the non-native speaker. These 

methods have a good theoretical justification, but articulatory 

measurements (e.g., via electromagnetic articulography) are 

difficult to obtain. In contrast, acoustic methods use techniques 

from the voice conversion literature to build a mapping 

between the two acoustic spaces, making them more attractive 

for practical applications (e.g., language learning). We 

compare two representative implementations of these 

approaches, both based on statistical parametric speech 

synthesis. Through a series of perceptual listening tests, we 

evaluate the two approaches in terms of accent reduction, 

speech intelligibility and speaker quality. Our results show that 

the acoustic method is more effective than the articulatory 

method in reducing perceptual ratings of non-native accents, 

and also produces synthesis of higher intelligibility while 

preserving voice quality.  

Index Terms: non-native accents, articulatory synthesis, 

electromagnetic articulography, voice conversion 

1. Introduction 

Techniques for foreign accent conversion seek to transform 

utterances from a second language (L2) learner to sound more 

native-like while preserving the L2 learner’s voice quality. 

This transformation is achieved by transposing foreign-accent 

cues and voice-identity cues between the L2 utterances and 

those from a native (L1) reference speaker. Two types of 

transforms can be used for this purpose: articulatory and 

acoustic [1-4]. Articulatory methods take articulatory 

trajectories from the L1 speaker, normalize them to match the 

articulatory space of the L2 speaker, and then use them to 

drive an articulatory synthesizer for the L2 speaker [5]. In 

contrast, acoustic methods use a modified voice-conversion 

technique in which the cross-speaker mapping is trained on 

linguistically similar frames from the L1 (source) and L2 

(target) speaker, as opposed to time-aligned parallel frames.  

Both approaches have pros and cons. Articulatory methods are 

theoretically motivated (i.e., Traunmüller’s modulation theory 

[5]) but require access to articulatory data, which is expensive 

and impractical outside research settings1. Acoustic methods, 

on the other hand, do not have the strong theoretical basis of 

articulatory methods but are far more practical because they 

only require access to acoustic recordings. How do the two 

approaches fare against each other in terms of accent-

conversion performance, that is, their ability to capture L1 

accent and L2 voice quality? 

To answer this question, this article presents an 

experimental comparison of two statistical parametric 

implementations, one representative of each approach. Shown 

in Figure 1(top), the articulatory implementation [3] uses a 

Procrustes transform to normalize L1 articulatory trajectories, 

measured via Electromagnetic Articulography (EMA), then 

maps them into acoustic observations using a Gaussian 

mixture model (GMM) trained on L2 joint acoustic-

articulatory observations. In contrast, and as shown in Figure 

1(bottom), the acoustic implementation [4] uses vocal tract 

length normalization (VTLN) to find pairs of L1-L2 frames 

with similar phonetic content, then trains a GMM to map L1 

and L2 acoustics features. We compare these two methods in 

terms of three criteria: accent reduction, speaker quality, and 

speech intelligibility, measured through a series of perceptual 

listening tests.  

Direct comparison between the two synthesis methods is 

misleading because they produce speech of different acoustic 

quality [6]. The articulatory method uses an incomplete 

representation of the vocal tract configuration (e.g., the 

position of a few EMA pellets), whereas the acoustic method 

uses full spectral information (e.g., Mel frequency cepstral 

coefficients). As such, synthesis results for the articulatory 

method tend to be of lower acoustic quality than those of the 

acoustic method. To address this issue, we use an “equivalent 

articulatory synthesis” technique for the acoustic-based 

method that matches its acoustic quality to that of the 

articulatory method, in this way ensuring a fair comparison 

between the two. The approach consists of building a mapping 

from L1 acoustics to L2 acoustics followed by a mapping from 

L1 articulators to predicted L2 acoustics. The result is a speech 

synthesis with the accent-conversion capabilities of the 

acoustic method and the synthesis quality of the articulatory 

method. More importantly, this also ensures that both 

                                                                 
1 Several techniques may be used to capture articulatory data, 

including ultrasound, x-ray, electropalatography, real-time MRI, and 

electromagnetic articulography. 
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synthesis approaches use the same incomplete representation 

of the vocal tract configuration. 

The rest of this paper is structured as follows. Section 2 

reviews previous work on using articulatory features for 

speech synthesis. Section 3 describes the two accent 

conversion methods and the “equivalent” articulatory 

synthesizer. Section 4 describes the experimental setup to 

compare the two accent conversion strategies. Results from 

perceptual tests are presented in section 5. Finally, section 6 

discusses our findings and proposes directions for future work. 

2. Related work 

Measurements of articulatory gestures via EMA have found 

application in several speech processing problems, such as 

robust speech recognition [7, 8], speech synthesis [9, 10], and 

speech modification [3, 11]. When vocal tract outline is 

available, EMA pellet positions can be converted into 

constriction-based features known as tract variables [12], 

which are more informative of phonological category [13, 14]. 

Compared to other articulatory recording techniques, such as 

real-time magnetic resonance imaging (rt-MRI), EMA 

provides high temporal resolution but also incomplete 

information about the configuration of the vocal tract. As an 

example, EMA does not capture the velum position, which is 

critical to identify nasal phonemes. The loss of phonetic 

information in EMA data has been established in a phoneme 

classification study by Heracleous, et al. [15]. The authors 

trained hidden Markov models (HMMs) to recognize French 

vowels and consonants; they found that classification accuracy 

decreased to 82% when EMA features were used, compared to 

96% when acoustic features were used (Mel frequency cepstral 

coefficients; MFCCs). Other studies have also illustrated the 

limitations of EMA in terms of its ability to capture sufficient 

articulatory information. In the domain of speech synthesis, 

Kello and Plaut [16] showed that synthesized speech driven by 

articulatory data had a word identification rates of 84% , 8% 

lower than those of the actual recordings –despite the fact that 

the EMA data had been complemented with measurements 

from electopalatography and laryngography. 

3. Methods 

We provide a brief overview of our GMM-based articulatory 

and acoustic methods; the interested reader is referred to the 

original publications for additional details [3, 4]. We will then 

describe the proposed equivalent articulatory synthesizer for 

the acoustic-based accent conversion method. 

3.1. Articulatory-based method 

The main component of the articulatory method is a GMM-

based forward mapping for the L2 speaker. Given a trained 

forward mapping and a sequence of articulatory feature 

vectors 𝒙 = [𝒙 𝟏, 𝒙 𝟐, …𝒙 𝑻] from a test utterance, we 

estimate the maximum-likelihood trajectory of acoustic feature 

vectors    =  [  𝟏,   𝟐 …  𝑻] as: 

  =  argmax
 

 𝑃 𝒀|𝒙  / 𝑇  𝑃 𝒗     (1) 

where 𝒀 = [  𝟏, Δ  𝟏,   𝟐, Δ  𝟐, …   𝑻, Δ  𝑻 ] is the time 

sequence of acoustic vectors (both static and dynamic) and 

𝒗    is the global variance (GV) of static acoustic feature 

vectors [17]. The probability distribution of GV, 𝑃 𝒗    , is 

modeled using a Gaussian distribution whereas the conditional 

probability 𝑃 𝒀|𝒙  is inferred from a joint probability 

distribution modeled using Gaussian mixtures.  

During the conversion process, we drive the L2 forward 

mapping with articulators from a L1 reference utterance 

normalized to account for the differences in vocal tract 

geometry between the L1 and L2 speaker. We normalize the 

L1 EMA data to match the articulatory space of the L2 speaker 

using a set of Procrustes transforms, one for each EMA pellet. 

These transforms are learned using the corresponding phone-

centroids of the EMA positions from both the speakers [18]. 

Please refer to [3, 17] for more details on the training and 

conversion steps. 

3.2. Acoustic-based method 

In the acoustic-based method, we train a cross-speaker spectral 

mapping             on L1 and L2 frames using a 

modified voice conversion technique. As shown in Figure 2(a), 

the conventional voice conversion procedure matches source 

and target frames based on their ordering in the corpus (via 

forced alignment). As a result, the voice conversion model 

captures not only the L2 voice quality but also the accent. 

Instead, in accent conversion we train the cross-speaker 

mapping using source-target pairs selected based on their 

phonetic similarity. Namely, we perform vocal tract length 

normalization to remove speaker information, then match 

source and target frames using their Euclidean distance (ie., 

Mel Cepstral Distortion). For further details, please refer to 

reference [4]. 

 

(a) (b) 

Figure 2: Frame pairings for (a) conventional voice conversion 

(VC) is based on forced alignment), whereas (b) for accent 

conversion (AC) it is based on their phonetic similarity. 

Given the trained model, we then estimate L2 acoustic 

feature vectors for a reference L1 test by incorporating the 

global variance and the temporal dynamics as: 

  =  argmax
 

 𝑃 𝒀𝑳𝟐|𝒀𝑳𝟏 
 / 𝑇  𝑃 𝒗  𝑳𝟐   (2) 

3.3. Equivalent articulatory synthesis for the 

acoustic-based method 

The objective of the equivalent articulatory synthesizer is to 

generate speech that has the segmental modification properties 

of the acoustic-based method but the acoustic quality of the 

articulatory-based method. For this purpose, we build a cross-

speaker forward mapping that estimates a sequence of L2 

acoustic vectors for a given sequence of L1 articulatory 

vectors. The equivalency is ensured by training the cross-

speaker forward mapping  𝑓  following the two-step process 

shown in Figure 3.  
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In the first step, we estimate the L2 acoustic vector for 

each L1 utterance in the training set using the cross-speaker 

spectral mapping function             of the acoustic-

based method in section 3.2. The resulting sequence of 

acoustic vectors        has the linguistic gestures of the 

reference L1 utterance but the voice-quality of the L2 speaker. 

In the second step, we train a cross-speaker forward mapping 

(𝑓 𝒙       ) on the joint distribution of L1 articulatory 

features 𝒙   and predicted L2 acoustic features        
generated in the first step. By training the cross-speaker 

forward mapping on the joint distribution, we ensure that for a 

test L1 utterance (i.e., sequences of features 𝒙   and     ), the 

estimated acoustic features 𝑓 𝒙    have (1) the segmental 

properties of the acoustic-based method        but (2) the 

acoustic quality of the articulatory method2. 

4. Experimental 

To compare the articulatory and acoustic strategies for accent 

conversion, we used an experimental corpus containing 

parallel articulatory (EMA) and acoustic recordings (16KHz 

sampling) from a native and a non-native speaker of American 

English [1, 3]. Both speakers recorded the same set of 344 

sentences, out of which 294 sentences were used for training 

the model and the remaining 50 sentences were used only for 

testing. Six standard EMA pellets positions (tongue tip, tongue 

body, tongue dorsum, upper lip, lower lip, and lower jaw) 

were recorded at 200Hz. For each acoustic recording, we also 

extracted aperiodicity, fundamental frequency and the spectral 

envelop using STRAIGHT analysis [19]. STRAIGHT spectra 

were sampled at 200Hz to match the EMA recording and then 

converted into Mel frequency cepstral coefficients (MFCCs). 

MFCCs were extracted from the STRAIGHT spectrum by 

passing it through a Mel frequency filter bank (25 filters, 8 

KHz cutoff) and then calculating discrete cosine 

transformation of these filter-bank energies. Following our 

prior work [3], the articulatory input feature vector consisted 

of the 𝑥 − 𝑦 coordinates for the six EMA pellets, fundamental 

frequency (log scale), frame energy  𝑀𝐹𝐶𝐶0  and nasality 

(binary feature extracted from the text transcript), while the 

acoustic feature vector consisted of 𝑀𝐹𝐶𝐶 − 4.  

We synthesized test sentences in four experimental 

conditions:  

 the proposed equivalent articulatory synthesis  𝐴𝐶𝐸𝑄  ,  

 the articulatory method of section 3.1  𝐴𝐶𝐸𝑀  ,  
                                                                 
2 Instead of using the acoustic-based accent conversion in the first step, 

equivalent L2 acoustic features can be directly obtained via forced 

alignment. However, this direct approach results in speech with native 

prosody but with non-native segmental characteristics. 

 the re-synthesis from L2 MFCC (𝐿2𝑀𝐹  ), and  

 a guise of L1 utterances to match the vocal tract length 

and the pitch range of L2 (𝐿1𝐺𝑈𝐼𝑆𝐸). 

We evaluated these conditions through a series of subjective 

listening tests on Mturk, Amazon’s crowd sourcing tool. To 

qualify for the study, participants were required to reside in the 

United States and pass a screening test that consisted of 

identifying various American English accents, including 

Northeast, Southern, and General American. 

5. Results 

We performed three listening experiments to compare 𝐴𝐶𝐸𝑄  

and 𝐴𝐶𝐸𝑀  in terms of the perceived reduction in non-native 

accents, intelligibility, and voice-similarity with the L2 

speaker. A different set of listeners was used for each listening 

experiment to reduce the effect of familiarity with test 

sentences.  

5.1. Non-native accent evaluation 

In a first listening experiment, we sought to compare the 

perceived reduction of non-native accents between the two 

strategies. For this purpose, participants  𝑁 = 15  were asked 

to listen to a pair of utterances of the same sentence from 

𝐴𝐶𝐸𝑄  and 𝐴𝐶𝐸𝑀 , and select the most native-like among 

them. Participants listened to 30 pairs of utterances (15 

𝐴𝐶𝐸𝑀 − 𝐴𝐶𝐸𝑄  pairs and 15 𝐴𝐶𝐸𝑄 − 𝐴𝐶𝐸𝑀  pairs) 

presented in random order to account for ordering effects. As 

Figure 4 shows, participants rated 𝐴𝐶𝐸𝑄  more native-like than 

𝐴𝐶𝐸𝑀  in 72%  𝑠 𝑒 = 3%  of the sentences, which is 

significantly higher  𝑡 14 = 8 87, 𝑝 < 0 001  than the 50% 

chance level. This result shows that the acoustic-based strategy 

is more effective than articulatory-based strategy in reducing 

non-native accents.  

 
Figure 4: Subjective evaluation of accentedness. 

Participants selected the most native-like utterances 

between 𝐴𝐶𝐸𝑄  vs. 𝐴𝐶𝐸𝑀 . 

5.2. Intelligibility assessment  

In a second experiment, we assessed the intelligibility of 

𝐴𝐶𝐸𝑄  , and compared it against a similar assessment of 

𝐴𝐶𝐸𝑀  reported in our prior study [3]. Following that study, a 

group of native speakers of American English (N=15 each) 

were asked to transcribe the 46 test utterances3 from the 

experimental condition 𝐴𝐶𝐸𝑄 . From the transcription, we 

calculated word accuracy  𝑊𝑎𝑐𝑐  as the ratio of the number of 

correctly identified words to the total number of words in the 

utterance. Participants also rated the (subjective) intelligibility 

of the utterances (𝑆𝑖𝑛𝑡𝑒𝑙) using a 7-point Likert scale (1: not 

intelligible at all, 3: somewhat intelligible, 5: quite a bit 

                                                                 
3 Four of 50 test sentences for the L2 speaker had missing EMA data 

and were removed from the analysis.  
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intelligible, and 7: extremely intelligible).  

Figure 5 shows the word accuracy and intelligibility 

ratings for 𝐴𝐶𝐸𝑄  against that of the articulatory-based accent 

conversion  𝐴𝐶𝐸𝑀   from our prior work [3]. The results show 

that accent conversions in the acoustic domain 

(𝐴𝐶𝐸𝑄   𝑊𝑎𝑐𝑐 = 0 86,  𝑆𝑖𝑛𝑡𝑒𝑙 = 4 48 ) were rated significantly 

more intelligible  𝑝 < 0 001; 𝑡 − 𝑡𝑒𝑠𝑡  than conversions in the 

articulatory domain  𝐴𝐶𝐸𝑀   𝑊𝑎𝑐𝑐 = 0 64,  𝑆𝑖𝑛𝑡𝑒𝑙 = 3 83  . 
The results also show higher intelligibility ratings for 𝐴𝐶𝐸𝑄  

than for 𝐴𝐶𝐸𝑀 , despite both being driven by the same 

articulatory input features.  

5.3. Voice identity assessment  

In a third and final listening experiment, we evaluated if the 

articulatory equivalent synthesis was able to preserve the voice 

identity of the L2 speaker. For this purpose, participants were 

asked to compare the voice similarity between pairs of 

utterances, one from 𝐴𝐶𝐸𝑄  , the other from 𝐿2𝑀𝐹  . As a 

sanity check we also included pairs of utterances from 𝐿2𝑀𝐹   

and 𝐿1𝐺𝑈𝐼𝑆𝐸, the latter being a simple guise of L1 utterances 

that matches the pitch range and vocal tract length of the L2 

speaker. As in the prior voice-similarity tests, the two 

sentences on each pair were linguistically different, and the 

presentation order was randomized for conditions within each 

pair and for pairs of conditions. Participants (𝑁 = 15) rated 40 

pairs, 20 from each group (𝐿2𝑀𝐹  − 𝐴𝐶𝐸𝑄  , 𝐿2𝑀𝐹  −

𝐿1𝐺𝑈𝐼𝑆𝐸  ) randomly interleaved, and were asked to (i) 

determine if the utterances were from the same or a different 

speaker and (ii) rate how confident they were in their 

assessment using a seven-point Likert scale (1: not confident at 

all, 3: somewhat confident, 5: quite a bit confident, and 7: 

extremely confident). The responses and their confidence 

ratings were then combined to form a voice similarity score 

 𝑉𝑆𝑆  ranging from −7 (extremely confident they are 

different speaker) to +7 (extremely confident they are from 

the same speaker). 

Figure 6 shows the boxplot of average 𝑉𝑆𝑆 between pairs 

of experimental conditions. Participants were ‘quite’ confident 

(𝑉𝑆𝑆 = 4 2, 𝑠 𝑒 = 0 5  that the 𝐿2𝑀𝐹   and 𝐴𝐶𝐸𝑄  were from 

the same speaker, suggesting that the equivalent articulatory 

synthesis for the acoustic-based strategy method successfully 

preserved the voice-identity of L2 speaker. This 𝑉𝑆𝑆 was 

comparable  𝑡 28 = 0 32, 𝑝 = 0 74, 𝑡𝑤𝑜 − 𝑡𝑎𝑖𝑙  to that 

between 𝐴𝐶𝐸𝑀  and 𝐿2𝑀𝐹    𝑉𝑆𝑆 = 4 0, 𝑠 𝑒 = 0 5  reported 

for the articulatory-based method in our prior work [3]. 

Moreover, participants were also ‘quite’ confident that (𝑉𝑆𝑆 =

−5 06, 𝑠 𝑒 = 0 7  the 𝐿2𝑀𝐹   and 𝐿1𝐺𝑈𝐼𝑆𝐸  were from 

different speakers, corroborating our prior finding that a 

simple guise of L1 utterances is not sufficient to match the 

voice of the L2 speaker [3].  

6. Discussion 

In this paper we compared the representative methods for two 

foreign accent conversion strategies: one that operates in the 

acoustic domain, the other in the articulatory domain. 

However, the direct comparison between the two methods in 

terms of perceived non-native accents is not feasible due to 

differences in their acoustic quality, which are known to bias 

perceptual ratings of accent [6]. To account for this difference 

in acoustic quality, we built an equivalent articulatory 

synthesizer for the acoustic-based method, so that syntheses in 

both methods are driven by the same articulatory features (i.e., 

from a reference native speaker). Perceptual listening tests 

indicate that the acoustic-based strategy is more effective in 

reducing perceived non-native accents than the articulatory-

based strategy. These findings make the acoustic-based 

methods even more appealing as a tool for computer aided 

pronunciation training than articulatory-based methods. 

Our finding suggests that the accent modification is more 

effective in acoustic space, but further study is required to 

verify if the comparatively lower reduction in perceived non-

native accents is due to the partial representation of vocal tract. 

Even after the inclusion of voicing and nasality features, the 

EMA data does not have the same level of phonetic 

information as the acoustic features. Recent advances in 

articulatory measurement such as rt-MRI [20] may help 

answer this question. In comparison to EMA, which can only 

capture a few fleshpoints in the frontal oral cavity, rt-MRI 

provides information about the entire vocal tract, from lips to 

glottis. The 3D image of the complete vocal tract, may 

improve the performance of articulatory-based accent 

conversion resulting in more intelligible, natural and native-

like conversions. Further study is also required to validate our 

findings in different L1-L2 pairs. We also plan to explore 

techniques to improve accent conversion by combining 

articulatory and acoustic features. One possible approach 

would be to use a combination of EMA and acoustic features 

while selecting linguistically similar frames from L1 and L2 in 

the acoustic-based method described in 3.2 [4]. 
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 (a) (b) 

Figure 5: (a) Word accuracy and (b) subjective 

intelligibility ratings for the two experimental groups: 

𝐴𝐶𝐸𝑄  and 𝐴𝐶𝐸𝑀 .  

 

Figure 6: Average pairwise voice similarity scores. 

𝐿2𝑀𝐹  & 𝐴𝐶𝐸𝑀  
∗ from [3]. 
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