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Abstract
Learning temporal patterns among primitive speech se-

quences and being able to control the motor apparatus for ef-
fective production of the learned patterns are imperative for
speech acquisition in infants. In this paper, we develop a pre-
dictive coding model whose objective is to minimize the sen-
sory (auditory) and proprioceptive prediction errors. Temporal
patterns are learned by minimizing the former while control is
learned by minimizing the latter. The model is learned using
a set of synthetically generated syllables, as in other contem-
porary models. We show that the proposed model outperforms
existing ones in learning vocalization classes. It also computes
the control/muscle activation which is useful for determining
the degree of easiness of vocalization.

Index Terms: speech acquisition, babbling, predictive coding

1. Introduction
Emergence of syllables is one of the most significant develop-
mental states in infant speech acquisition. The transition be-
tween a consonant and a vowel is fast in adult speech. In de-
veloping children, it takes time to learn this transition. Usu-
ally infants learn to produce syllables between 4 and 10 months
of age [1]. Their speech production is influenced by feedback
from their own production, besides native language and social
interaction in their ambient environment [2]. An understand-
ing of the underlying mechanism of syllable (developmental se-
quence) generation will be useful for rehabilitation of children
with early risk of autism spectrum disorder.

Most of the existing computational models focus only on
the development of vowels [3, 4, 5, 6, 7, 8]. Although some
have addressed how syllables might be learned, they have a
number of limitations. In one model [9], intrinsic interest was
exploited to learn syllables. However, the model does not learn
the temporal pattern among the consonant and vowels and it
requires prior knowledge about acoustic-articulatory states. In
[10], a reinforcement-based spiking neural network model is
developed for generating canonical babbling which receives a
reward when the produced sound is more salient than previ-
ously generated sounds. But the model cannot learn the sen-
sorimotor mapping and it exploits only one motor degree of
freedom for implementation simplicity. In [11], a neural net-
work model is developed to learn the temporal relationship be-
tween consonant-vowel sequences to explain how babies learn
to speak. But it requires both the initial forward and inverse
model which contains the prior relationship between acoustic
and articulatory states. Moreover, it lacks the control policy for
vocalization. In reality, babies do not have access to any artic-
ulatory information. In [12, 13], a cognitively plausible neural

network model learns spatiotemporal auditory and somatosen-
sory target regions for different speech sounds stored in a map
but it fails to explain how others’ speech can be recognized as
auditory activations. The Eliza model [14, 15] is based on non-
imitative child and caregiver behaviors. It does not focus on the
emergence of syllabic patterning. Various parameterizations are
involved in computing the reward function. Also, the model re-
quires an external caregiver for providing feedback.

Based on the predictive coding principle of perception, ac-
tion and learning [16, 17], we propose a model for learning the
articulatory-acoustic association, the temporal relation among
the developmental sequences and the control policy of vocal-
ization during the emergence of syllables. The model explores
the acoustic space by perceiving the sounds from its own pro-
duction as well as from the environment. It randomly chooses
the acoustic goal from the perceptual space, infers the cause
and performs the optimal action to explain away the prediction
error. The aim of the model is to reproduce the acoustic goal.

The key features of this model are as follows. It learns
temporal patterns among developmental sequences which is not
considered in [14, 10, 9]. Action/motor command is not gen-
erated directly from the sensory state but as a result of explain-
ing the sensory prediction error, which is consistent with mirror
neuron theory [17]. Our model exploits nine degrees of freedom
for controlling the vocal tract whereas the model in [10] exploits
only one. Our model can compute the required action/motor ac-
tivation to manipulate the articulators in order to identify which
vocalization is easy/hard to learn. Such identification is neces-
sary for the emergence of developmental sequences [9, 18].

2. Models and Methods
In this paper, we will assume that synthetically generated vo-
calizations from articulatory synthesizer constitute the agents
perceptual space (S). The agent’s goal is to generate the syl-
lable (y) of sequences of length T . The task is to compute the
cause (x̂) of generating y. We construct the motor parameters
as causes. The predicted auditory effect for x̂ is ŷ. After infer-
ring the causes, the model computes the optimal action/motor
command (a) to reach the inferred causal state (x̂) from the cur-
rent state (x) of the body. The consequence of action execution
is perceived from the environment as ye. The overall objective
of the model is to minimize prediction error (E) where,

E =

⎡
⎣
Ep

Ei

Ef

⎤
⎦ =

⎡
⎣
x− x̂
y − ye

ye − ŷ

⎤
⎦

The architecture of the proposed model is shown in Fig. 1.
It consists of three parts: a generative network for learning the
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Figure 1: Architecture for proposed model.

association between y and x̂, an actor-critic network for com-
puting the optimal action a, and the environment for production
of ye from x and a. The environment is modeled as:

ye
t = ge(he

t , x
e
t , at)

he
t = fe(he

t−1, x
e
t , at)

(1)

The agent’s internal model/genrative network of the envi-
ronment can be described as:

ŷt = g(ĥt, x̂t)

ĥt = f(ĥt−1, x̂
)
t

(2)

where ge, fe and g, f are continuous nonlinear functions of
the states of the environment and internal model respectively.
The states xt, referred to as causes at time t, are responsible
for generating the sensory data yt, h is the hidden states. The
difference between true generation (Eq. 1) and internal model’s
generation (Eq. 2) constitutes the sensory prediction error that
action tries to fulfil. The internal model is learned by mini-
mizing sensory prediction error in order to remain grounded
to the changing environment, as in biological agents [19, 17].
The network is learned in a layer-by-layer manner, similar to
[16, 20, 21].

The generative network is modeled using a 3-layered recur-
rent neural network whose sensory input is y, hidden state is
h, and the cause x is the activation strength of a set of neurons
with generative weights W f = {W f1 ,W ff ,W f2}. An ap-
propriate set of activations can be used to reconstruct y using
Wf . Another set of weights, W i = {W i1 ,W ii,W i2}, is
required to compute the activation of the cause x that actually
generated the input. {W f1 ,W f2} are top-down or feedback
weights, {W i1 ,W i2} are bottom-up or feedforward weights,
and {W ff ,W ii} are lateral weights. See Fig. 1. Unlike the
model in [21] where tied weights are used, feedforward and
feedback weights in our model are distinct.

The activations of the hidden states and causes necessary to
generate a sensory input y starting at time t and of sequence

length T , are given by:

ĥi
t = W i1yt +W iiĥi

t−1

x̂t = W i2 ĥi
t

(3)

The predicted sensory input ŷt is:

ĥf
t = W f1 x̂t +W ff ĥf

t−1

ŷt = W f2 ĥf
t

(4)

The internal model predicts the sensory (auditory) and its
corresponding motor state. As in [20, 22], we define the pre-
dicted auditory sensory using the generative model as ŷ =
{ŷt}t=1...T and the predicted proprioceptive sensory (also re-
ferred to as sensation) using the inverse generative model as
x̂ = {x̂t}t=1...T . Perception reduces prediction error by
changing prediction and action reduces the prediction error
by changing sensation. Current motor state of the body is
x = {xt−1}t=1...T . So, the prediction error of the agent’s in-
ternal model can be minimized either by performing action or
by altering the internal model. The optimal parameters of the
generative and inverse generative models can be determined by
minimizing ‖Ef‖22 and ‖Ei‖22 respectively, written as:

W f = argmin
W f

‖Ef‖22 (5)

W i = argmin
W i

‖Ei‖22 (6)

In reality, the agent needs to execute the action to receive
sensory input ye via the environment. The optimal action can
be computed by minimizing ‖Ep‖22. Recent deep learning
models can successfully learn optimal control policies in high
dimensional data spaces with very little prior knowledge. The
deep deterministic policy gradient (DDPG) [23, 24] is used in
our model to learn the optimal policy (for other approaches, see
[25, 26]). The inputs to the actor-critic network are the current
motor state (x|t=0) and the predicted motor state (x̂) which is
also the goal state. The actor-critic network computes the opti-
mal sequences of actions to reach the goal state.

The actor network, μ(x|θμ), takes the current state as in-
put and generates action as output, while the critic network,
Q(x, a|θQ), evaluates the action for that state. For learning the
network, target values are generated using target critic and actor

networks, Q′(x, a|θQ′
) and μ′(x|θμ′

). The parameters of the
target network are learned very slowly as: θ′ ← τθ+(1−τ)θ′,
0 < τ � 1. The critic network is learned using error back-
propagation, while the actor network is learned with sampled
gradient as follows:

∇θμμ|xm ≈ 1

M

∑
m

∇aQ(x, a|θQ)|x=xm,a=μ(xm)

∇θμμ(x|θμ)|xm

(7)

Details of the algorithm can be found in [23]. After com-
puting the optimal action, it is executed through the vocal tract
to generate sound ye. If action fails to minimize sensory er-
ror Ei, the model needs to be updated. The generative and in-
verse models are updated using backpropagation through time
(BPTT) [27]. Algorithm 1 is the pseudo code for operation of
the proposed model.
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Algorithm 1 Operation of the proposed model.

1: Initialize W f ,W i.

2: for k = 1 to∞ do
3: Get x from the current state of the body

4: Choose y ∈ S
5: Predict x̂ using Eq. 3

6: Predict ŷ using Eq. 4.

7: Compute Ep = x− x̂
8: Update θQ using backpropagation.

9: Update θμ using Eq. 7.

10: for t = 1 to T do
11: Compute at = μ(xt−1|θμ)
12: end for
13: Execute a
14: Get ye from the environment

15: if |Ei| > ε then
16: Update W i by solving Eq. 6 using BPTT.

17: end if
18: if |Ef | > ε then
19: Update W f by solving Eq. 5 using BPTT.

20: end if
21: end for

3. Experiments

3.1. Simulation Conditions

For simulations, the generative model is a recurrent neural net-
work consisting of one hidden layer with 20 units and linear
activation function. Both the actor and critic networks are mul-
tilayered perceptrons with two hidden layers. In each hidden
layer, there are 20 hidden units with tanh activation function.

As part of the environment, we have used articulatory syn-
thesizer of the DIVA model [12] based on Maeda’s model [28].
Seven degrees of freedom constitute our motor space: jaw
height (JH), tongue position (TP), tongue shape (TS), tongue
apex (TA), lip area (LA), lip protrusion (LP), and larynx height
(LH). During vocalization, infants learn to control the vocal
tract by changing the muscle activations. For phonation con-
trolling, we used glottal pressure and voicing parameter. So a
vocalization of L ms duration is a trajectory in 9-dimensional
motor space where seven are articulatory parameters and two
are voice controlling parameters. The motor system is modeled
as overdamped spring-mass system, as in [9]. The agent’s op-
timal policy for the vocalization is learned by the actor-critic
network using the DDPG algorithm [23].

On the perception side, we have used the first five formants,
corresponding bandwidths and phonation as acoustic feature.
The acoustic feature vector is normalized to zero mean and unit
variance. If the phonation controlling parameters (glottal pres-
sure and voicing parameters) have a value above a threshold
(0.1) and area function of vocal tract is positive everywhere,
the phonation occurs. If phonation occurs, depending on the
level of phonation, the syllables are classified into one of three
classes: vowels, consonants and none, as in [9]. If the phonation
level I is less than 0.15, the generated sound is considered as
none. For 0.15 < I < 0.9, the produced sound is categorized
as consonants, and for I > 0.9, it is classified as vowels.

Table 1: Percentage of vocalization classes produced in devel-

opmental stages of the generated vocalization sequence.

Voca- Proposed model Model in [9]

lization Developmental Stages Developmental Stages

classes I II III I II III

NN 15.5 2.5 0.8 45.3 4.0 1.6

CN 10.1 15.2 3.9 13.4 26.9 3.7

NC 0.9 1.5 0.3 0.6 0.1 0.1

VN 17.5 20.1 6.9 18.9 62.2 12.1

NV 5.6 0.2 0.7 4.5 0.1 0.8

VV 43.4 50.1 72.1 9.9 3.4 67.5

CV 5.6 8.2 10.9 6.6 0.5 6.5

VC 0.9 2.1 4.9 0.7 2.5 6.8

CC 0.5 0.1 0.3 0.2 0.2 0.8

3.2. Emergence of syllables

Initially, the motor parameters of the DIVA model are randomly
varied to generate 100,000 sounds which constitute the percep-
tual space, S, of the agent. The environment plays an im-
portant role in the process of speech acquisition. As an envi-
ronmental influence, ‘ambient language’ is modeled as set of
two sequence of speech sounds. In order to make it coherent
with human language and learning process observed in devel-
opment, we have chosen speech-like sounds, such as vowel or
consonant-vowel sounds, as in [9]. The environment consists of
different articulatory sequences with different combinations of
eight consonants, {/b/, /d/, /g/, /z/, /p/, /t/, /k/, /s/} and
eight vowels {/a/, /e/, /i/, /o/, /u/, /ae/, /oe/, /y/} gen-
erated by the DIVA articulatory synthesizer.

The model is initially learned by choosing the acoustic goal
from its own generated perceptual space by considering T = 1.
Then the model randomly chooses the acoustic goal from the
environment or from its own previously explored spaces with
T = 2 (for syllables). Now the network starts learning the
lateral weights and refine the generative and inverse weights,
as explained in Section 2. The inverse generative model and
actor-critic network were learned with learning rate 0.01, and
the generative model is updated with very low learning rate of
10−4.

After generation of 30,000 vocalizations using randomly
selected goals, the percentage of vocalization classes are com-
puted using the sounds produced by the model. This experiment
is performed again for 150,000 and 250,000 vocalizations. The
developmental stages are referred to as Stage I, Stage II and
Stage III for 30,000, 150,000 and 250,000 vocalizations respec-
tively. Table 1 shows the comparison between our model and
the model developed in [9] in terms of percentage of vocaliza-
tion classes. In the beginning, our agent cannot produce the
sounds from the ambient language. Later during its develop-
ment the agent gradually covers a wide range of sounds, which
indicates it is learning to control its articulatory parameters.
With reinforcement from the environment, it eventually starts
to learn how to produce those sounds which are actually gener-
ated from the environment.

In one experiment, the syllable /ba/ is set as an acoustic
goal for the model. The model inferred the cause of the mo-
tor state and predicts the reconstruction using the generative
model. In order to reach the acoustic goal, the agent needs
to execute action to reach from current motor state to desired
causal/motor state which eventually generates the goal. The
optimal trajectory of all the parameters and the required mus-
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Figure 2: During the generation of syllable /ba/ (a) articulatory trajectories, (b) action required for each articulatory parameter, (c)

reproduced sound;(d) action required for co-articulation of ”b” and different vowels (best viewed in color).

cle activations to reach the desired motor state through the
actor-critic network are shown in Fig. 2(a) and (b) respec-
tively. The reproduced sound from the environment after ac-
tion execution is shown in Fig. 2(c) using red line. The sylla-
bles /ba/, /da/, /ga/, /ka/, /pa/, /ta/ are given as acoustic
goals and the model reproduced them by transition time steps
of 96 ms,108 ms, 114 ms, 93 ms, 102 ms, and 114 ms. It
requires less voice transition time to generate /ba/, /pa/ than
/ta/, /ga/, /ka/ which is consistent with the findings in [29].
It is shown through clinical analysis in [30] that mean voice on-
set time (VOT) for /pa/ is 12 ms less than /ta/ and 22 ms less
than /ka/. Using the proposed model, we found similar results;
VOT for /pa/ is 12 ms less than /ta/ and 18 ms less than /ka/.
Moreover, the average muscle activation required for seven ar-
ticulatory parameters to produce /biy/, /bey/, /beh/, /bah/,
/baa/, /bao/, /boh/, /buw/, /biw/, /bew/, /boe/ are calcu-
lated using the proposed model, and shown in Fig. 2(d). The
muscle activation required for jaw height is greater for the CVs
where the consonants are in conjunction with high vowels due
to their effect of co-articulation. The tongue width is greater
for high and front vowels as compared to other vowels [18]. In
our model, the muscle activation of tongue shape turned out to

be greater for consonants in conjunction with high vowels than
those in conjunction with low vowels.

4. Conclusions
We proposed a computational model for speech acquisition that
successfully explained the underlying mechanism for the emer-
gence of syllables based on the principle of predictive coding.
Unlike existing models, it learns the temporal patterns of de-
velopmental sequences exploiting nine degrees of freedom in
motor space. It also computes the muscle activation for gener-
ating syllables which provides insight into the degree of easi-
ness of the produced speech. By choosing random goals and
minimizing prediction error relentlessly, the model was able to
produce syllables successfully. The model can infer articulatory
states through the inverse generative model to generate syllables
without any prior knowledge of causal states, and computes op-
timal action which leads to the emergence of canonical babbling
during infant speech development.
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