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Abstract
Recognition of natural emotion in speech is a challenging

task. Different methods have been proposed to tackle this com-
plex task, such as acoustic feature brute-forcing or even end-
to-end learning. Recently, bag-of-audio-words (BoAW) repre-
sentations of acoustic low-level descriptors (LLDs) have been
employed successfully in the domain of acoustic event classifi-
cation and other audio recognition tasks. In this approach, fea-
ture vectors of acoustic LLDs are quantised according to a learnt
codebook of audio words. Then, a histogram of the occurring
‘words’ is built. Despite their massive potential, BoAW have
not been thoroughly studied in emotion recognition. Here, we
propose a method using BoAW created only of mel-frequency
cepstral coefficients (MFCCs). Support vector regression is
then used to predict emotion continuously in time and value,
such as in the dimensions arousal and valence. We compare
this approach with the computation of functionals based on the
MFCCs and perform extensive evaluations on the RECOLA
database, which features spontaneous and natural emotions.
Results show that, BoAW representation of MFCCs does not
only perform significantly better than functionals, but also out-
performs by far most of recently published deep learning ap-
proaches, including convolutional and recurrent networks.
Index Terms: speech analysis, speech emotion recognition,
bag-of-audio-words, computational paralinguistics

1. Introduction
Emotion recognition in speech (ERS) is a research field of
growing interest, as it has found many real-life applications
during the last decade, especially for human-computer inter-
action (HCI), and computer-mediated face-to-face interaction
(FF-HCI). Indeed, having access to the affective state of the
user makes HCI not only more efficient, but also more human-
like [1]. Moreover, as emotion plays a prominent role in persua-
sion, FF-HCI can benefit from affective computing with, e. g.,
negotiation training systems [2].

Systems that perform automatic ERS generally follow a
similar procedure. Time-continuous acoustic low-level descrip-
tors (LLDs), such as spectral-, cepstral-, and source-related
LLDs, are firstly extracted. They are computed over very short
segments (usually 30 ms) of the audio signal, which are not
meaningful w. r. t. the emotional state of the speaker, as emo-
tion is a suprasegmental phenomenon. Therefore, functionals,
such as moments and percentiles, are computed from the LLDs
with a larger segment of the audio signal, e. g., a speaker turn,
or a sliding window of several seconds. A discriminative classi-
fier, such as Support Vector Machines (SVMs) [3], can then be
used to perform emotion prediction.

Recently, end-to-end learning was proposed for ERS, by
combining convolutional neural networks with memory en-
hanced Deep Neural Networks (DNNs), and thus omitting the
feature extraction step [4]. However, this process is fully based
on machine learning, and meaningful interpretations of the fea-
tures learnt by the DNNs are hard to obtain. Another approach
has recently emerged – bag-of-audio-words (BoAW) –, in order
to estimate an understandable, yet useful, representation of the
LLDs, taking benefits of the accomplishments obtained in the
field of natural language processing, where documents are clas-
sified based on linguistic features. An interesting motivation
behind BoAW is that the recognition system is more robust as
the feature vectors are quantised as a first step. The codebooks
are usually generated using clustering methods [5]. Random
sampling of the training set has also been proposed [6].

Being at the border of acoustics and linguistics, BoAW is a
well-established technique in the field of acoustic event classi-
fication [5, 6, 7, 8], and has also been successfully applied for
various others tasks, e. g., monitoring [9], song detection [10],
multimedia copy detection [11], and multimedia event classifi-
cation [12, 13, 14]. However, BoAW has rarely been applied in
the field of ERS. In [15], the IS 2009 Emotion challenge feature
set [16] was used to construct BoAW. As the feature vectors are
quite large, they were split into several sub-vectors before being
quantised according to corresponding sub-codebooks. Then,
only the assigned indexes were quantised in another step ac-
cording to a high-level codebook. Even though the reported
results outperformed the state-of-the-art on a two-class emo-
tion recognition task (negativity vs non-negativity), the use of
functionals in a BoAW framework is neither common nor well-
founded. Indeed, the histogram generation itself already de-
scribes the distribution of the features. Moreover, the use of a
hierarchical creation of the bag from indexes is questionable, as
their order and distance does not contain any information.

In this light, we investigate BoAW for a time-continuous
prediction task of spontaneous emotions from speech. We will
show that, this approach can provide highly competitive results,
even better than recent DNNs based end-to-end learning [4], by
using only MFCCs and energy as LLDs, and linear SVMs for
regression. The major contributions of this study are the fol-
lowing: (i) to our best knowledge, time- and value-continuous
ERS using BoAW is investigated for the first time, (ii) a rel-
atively simple approach, based on standardised LLDs, is pre-
sented achieving still best results for the prediction of the emo-
tional valence from speech on the RECOLA corpus, and (iii)
BoAW representations are compared to and fused with a repre-
sentation using functionals.

The remainder of this article is structured as follows: first,
a detailed description of the BoAW system is introduced (Sec-
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tion 2); then, we define the database and experimental setups
(Section 3). We next comment on the evaluation results (Sec-
tion 4), before concluding (Section 5).

2. Methodology
2.1. Feature extraction
Even though they do not incorporate explicitly prosodic infor-
mation, MFCCs have proven to be relevant for ERS [17]. As
acoustic LLDs, we thus computed 12 MFCCs and the logarith-
mic signal energy on 25 ms long frames, with a frame rate of
10 ms, using our open-source openSMILE toolkit [18]; a pre-
emphasis (k = 0.97) was done beforehand on the acoustic sig-
nal. All features are then standardised to zero mean and unit
standard deviation with an online approach, i. e., mean and stan-
dard deviation values are computed on the training partition and
used to standardise all features of training, validation, and test
partition.

2.2. Bag-of-audio-words
The codebook generation is performed on the training partition.
We investigate two different methods: random sampling [6],
and k-means++ clustering [19]. Random sampling can be re-
garded as the initialisation step of k-means++ clustering, where
the codebook vectors are picked iteratively from the entire train-
ing partition, with audio words having a larger distance to the al-
ready selected words have a higher probability of being chosen
next. However, codebook generation based on kmeans++ clus-
tering resulted in only little performance improvement (about
2 %), for some specific configurations. Therefore, we decided
to only use random sampling to generate the codebook on
all experiments, as it is much faster to compute compared to
kmeans++.

Regarding the codebook size, i. e., the number of audio
words, there is no general best practice. It is, however, obvi-
ous that the optimum codebook size depends on the number
and type of LLDs, but also on the task. In general, larger code-
books are thought to be more discriminative, whereas smaller
codebooks should generalise better [12], especially when back-
ground noise is present in the data, as smaller codebooks are
more robust against incorrect assignments.

Once the codebook has been generated, acoustic LLDs
within a certain window of the speech signal are quantised, i. e.,
assigned to the closest (Euclidean distance) audio word in the
codebook. Then, a histogram (‘bag’) is created from the fre-
quencies, where each audio word w is closest to the features of
an input frame within the window, the term frequency TF (w).
This is exemplified for a short audio excerpt in Figure 1. As
it might be the case that one input frame has a low distance
to several audio words and hence the assignment is ambigu-
ous, we take multiple assignments into account, i. e., the TF of
the Na nearest audio words w is incremented by 1. Thus, no
soft thresholding, or Gaussian encoding is applied, as proposed
in [14], as preliminary experiments have not led to convincing
results.

As in the standard bag-of-words approach from document
classification, the common logarithm is taken to compress the
range of the term frequencies: TF ′(w) = lg(TF (w)+1). The
whole BoAW framework – openXBOW – has been implemented
in Java and is publicly available as an open-source toolkit [20].

2.3. Support vector regression
In order to perform time-continuous prediction of emotional di-
mensions (arousal and valence), we used SVMs based regres-

Figure 1: BoAW generation exemplified for the case of single
audio word assignment.

sion. As shown in [12], and confirmed in our preliminary ex-
periments, Gaussian and polynomial kernels do not perform
better than linear kernels with BoAW. In addition, we tested
the histogram intersection kernel [21, 12], but the performance
was similar to that with a linear kernel, for a larger computa-
tional effort. To speed up the training and tuning of the hyper-
parameters, we thus used the Liblinear toolkit [22], with the
default solver, i. e., L2-regularized / L2-loss regression with
the dual formulation of the SVMs optimisation problem, and
a unit bias. The complexity parameter is optimised in the range
C = [10−5 − 100] with a logarithmic scale. In order to com-
pensate for scaling and bias issues in the predictions, but also
noise in the data, we used the same post-processing chain as
employed in [4].

3. Experiments
3.1. Database
We evaluate the proposed method on the RECOLA (Remote
Collaborative and Affective Interactions) corpus [23], as it con-
tains fully spontaneous and natural affective behaviours. It in-
cludes 46 multimodal (audio, video, and physiological data)
recordings of French speaking participants involved in a dyadic
collaborative task. Even though the proposed openXBOW
framework could be applied similarly to video and physiologi-
cal data, we only used the audio recordings in this study.

Affective behaviour of the participants was evaluated by six
different annotators (3 female, 3 male), for the first five minutes
of each recordings, i. e., all annotators consistently annotated
all recordings. Annotation was performed for arousal and va-
lence separately, on a continuous scale ranging from −1 to +1.
Obtained labels were then resampled to a constant 40 ms frame
rate.

The gold standard, i. e., the emotion perceived by all raters,
was estimated by considering inter-evaluator agreement [24, p.
25]. As the emotion shown by the participants and the one re-
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ported by the annotators are not contemporaneous, due to the
reaction time of the raters, this delay must be taken into ac-
count when using a non-context aware machine learning algo-
rithm [25]. Therefore, all annotations are shifted backward in
time before training a model. In our experiments, we optimised
the time shifts with values ranging from 0 to 8 s, and a 0.4 s step.

3.2. Evaluation
In order to ensure speaker-independence in the experiments, the
corpus was split into 3 disjoint partitions: training (16 subjects),
validation (15 subjects), and testing (15 subjects), by stratifying
on gender and mother tongue; we used the exact same partitions
as in [4]. All hyper-parameters were optimised on the valida-
tion partition, and then applied on the test partition. Training
of the models was performed with data computed only every
800 ms. In contrast, the evaluation on both validation and test
set is done at the original rate, i. e., every 40 ms. As SVMs
cannot learn long-term contextual information, we optimised
the size of the sliding window used to compute acoustic LLDs
within the range of 4 s to 12 s, with 2 s step.

To evaluate the agreement level between the predictions of
emotion and the gold standard, the standard metric is the con-
cordance correlation coefficient (CCC) [26], cf. Equation 1:

ρc =
2σ2

xy

σ2
x + σ2

y + (µx − µy)2
, (1)

with µx = E(x), µy = E(y), σ2
x = var(x), σ2

y = var(y)
and σ2

xy = cov(xy). In contrast to the largely used Pear-
son’s correlation coefficient (PCC), CCC takes also the bias,
i. e., (µx − µy)

2, into account. Just as PCC, CCC takes values
between -1 and 1, where 1 implies optimum prediction.

3.3. BoAW
We performed an iterative search on the parameter space con-
sisting of delay (D), window size (Ws), codebook size (Cs),
number of assignments (Na) and the complexity parameter of
SVR (C). Preliminary experiments have shown that a delay of
3.2 s, and a window size between 6 and 8 s, provide the best
results. Thus, in the first round of optimisation, we kept the
delay constant and varied the window size only between 6 and
8 s. Results obtained during this optimisation phase are given in
Table 1.

In order to further optimise complexity, window size and
delay, we chose only three combinations of Na and Cs that
prove to work well: the optimum parameters (Na = 200,
Cs = 5000), a well-suited codebook size in case of single-
assignment (Na = 1, Cs = 200) and the configuration (Na =
20, Cs = 1000), as a trade-off between good performance for
the prediction of valence and computational effort. It must be
noted that, a larger codebook size leads to a higher computa-
tional complexity. Table 2 provides the best results with those
three sets of parameters. Additionally, we show the evolution of
performance over different delays and window sizes in Figure 2;
we used here the same configuration (Na = 20, Cs = 1000) to
save computation time.

3.4. Comparison with functionals
To generate a point of comparison between BoAW and func-
tionals, we computed the mean and the standard deviation for
all 13 LLDs, instead of BoAW. The same optimisation proce-
dure as used for BoAW was then performed on the obtained
features. The results are given in Table 3.

Table 2: Optimised parameters and results for the validation
and test partitions for single-assignment and multi-assignment.

Na CS Dimension D Ws C CCC
[s] [s] Valid Test

1 200 Arousal 4.0 8.0 10−3 .768 .716
20 1000 Arousal 3.6 8.0 10−4 .789 .738
200 5000 Arousal 3.2 6.0 10−5 .793 .753
1 200 Valence 4.8 12.0 10−2 .490 .417

20 1000 Valence 4.4 10.0 10−3 .550 .430
200 5000 Valence 5.2 12.0 10−1 .558 .378

Table 3: Results with functionals of LLDs.

Dimension D Ws CCC
[s] [s] Valid Test

Arousal 4.0 8.0 .790 .720
Valence 4.0 10.0 .459 .402

3.5. Feature fusion
In order to estimate the complementarity between the two repre-
sentations of the LLDs (functionals and BoAW), we performed
early fusion of the features, i. e., we concatenated the 26 fea-
tures obtained with the functionals with the best BoAW models
obtained in Table 2. A delay of 4 s and a window size of 8 s
and 10 s, for arousal and valence, respectively, were chosen as
this configuration appeared to work best on average. To get a
fair comparison between the two approaches, we provide results
with and without standardisation of all features in Table 4.

4. Discussion
It is obvious that the optimal number of assignments depends
on the codebook size. Results show that, multi-assignment (and
thus larger codebooks) are more useful for the prediction of va-
lence compared to arousal, for which BoAW representations are
only beneficial, i. e., statistically significant (p < 0.05) w. r. t.
Fisher’s z-transform, compared to simple functionals, for the
largest codebook size, cf. Table 2. However, results obtained
on valence with BoAW are almost always significantly better
than with functionals, for both validation and test partition, ex-
cept for the test partition with the largest codebook size. Pa-
rameters thus must be tuned more carefully for valence than
for arousal, which confirms that, prediction of the emotional
valence is more challenging than for arousal. However, consid-
ering the lower performance obtained on the test partition for
valence (Na = 200, Cs = 5000), a codebook size larger than
103 seems not reasonable.

Early fusion of functionals and BoAW clearly improves the
performance for valence on the test partition, which thus show
their complementarity. Surprisingly, larger codebooks, which
generally worked better in case of BoAW only, decreased the
performance when fused with functionals. One possible reason
might be the larger difference of the dimensions. Also standard-
isation does not seem to be beneficial.

A comparison of performance obtained on the audio record-
ings of the RECOLA database with the two best performing
methods based on DNNs is given in Table 5. All of those ap-
proaches are significantly (p < 0.05) outperformed by the pro-
posed BoAW for valence, while gaining almost the same per-
formance for arousal. It must be stated, however, that the win-
ner of the AV+EC 2015 Challenge [27], had less data available
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Table 1: Best CCC (arousal|valence) for the given codebook size (Cs) and number of assignments (Na) on the validation partition.

Na

Cs 1 2 5 10 20 50 100 200 500 1000
10 .750|.358 .716|.332 .715|.222
20 .751|.355 .750|.353 .744|.314 .739|.319
50 .776|.447 .773|.463 .775|.410 .782|.393 .765|.425

100 .771|.469 .777|.477 .786|.477 .784|.440 .784|.422 .768|.382
200 .766|.474 .774|.502 .779|.491 .785|.458 .786|.431 .782|.388 .769|.399
500 .761|.480 .760|.477 .779|.519 .787|.518 .790|.512 .788|.466 .789|.442 .784|.383

1000 .763|.444 .760|.471 .777|.501 .783|.522 .789|.539 .789|.509 .787|.490 .788|.462 .785|.402
2000 .746|.459 .752|.459 .770|.494 .779|.505 .783|.528 .787|.541 .790|.530 .790|.515 .788|.449 .789|.406
5000 .742|.423 .746|.423 .760|.482 .768|.493 .772|.504 .785|.525 .791|.540 .793|.543 .792|.514 .791|.491

10000 .747|.373 .750|.373 .761|.484 .761|.484 .764|.494 .780|.515 .787|.522 .790|.532 .791|.520 .791|.509

Figure 2: Performance for arousal (left) and valence (right) with different window sizes and delays. (Na = 20, Cs = 1000)

Table 4: Results with early fusion of functionals and BoAW. De-
lay D=4.0 s.

Na Cs Dimension Ws Std. CCC
[s] BoAW Valid Test

1 200 Arousal 8.0 no .799 .738
20 1000 Arousal 8.0 no .677 .511
1 200 Arousal 8.0 yes .796 .728
20 1000 Arousal 8.0 yes .535 .384
1 200 Valence 10.0 no .518 .457
20 1000 Valence 10.0 no .309 .234
1 200 Valence 10.0 yes .521 .465
20 1000 Valence 10.0 yes .245 .196

to train their model (9 sessions), and some improvement could
probably be obtained by training on more sessions.

5. Conclusions and outlook
In this paper, we have shown that, BoAW can significantly out-
perform best performing deep learning based approaches for
ERS on the RECOLA database, by using only MFCC and en-
ergy LLDs. Moreover, we have shown that this representation
is complementary with traditional functionals, as early fusion
improved further the performance for valence.

Future work will comprise the investigation of methods
taking structural information into account, such as the pyra-
mid scheme [5] or n-grams [13], which are both well known

Table 5: Performance comparison of recently published meth-
ods for speech-based emotion recognition on RECOLA.

Model Ref. CCC
Arousal Valence

Valid Test Valid Test
BLSTM-RNN [27] .800 .398
CNN (end-to-end) [4] .741 .686 .325 .261
Proposed (BoAW) Table 2 .793 .753 .550 .430
Proposed (early fusion) Table 4 .799 .738 .521 .465

in language processing. To exploit the linguistic information
of the speech, the proposed features from the acoustic domain
will be augmented by textual BoW by means of automatic
speech recognition. The BoAW will be further evaluated in real-
life conditions, i. e., on noisy data sets recorded ‘in the wild’.
Moreover, long short-term memory recurrent neural networks
(LSTM-RNN) will be exploited for the regression task, instead
of SVMs, as they are capable of modelling long-term depen-
dencies between features and emotional behaviour.
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