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Abstract
In an attempt to predict the outcomes of matrix sentence tests
in different languages and various noise conditions for native
listeners, the simulation framework for auditory discrimina-
tion experiments (FADE) and the extended Speech Intelligibil-
ity Index (eSII) is employed. FADE uses an automatic speech
recognition system to simulate recognition experiments and re-
ports the highest achievable performance as the outcome, which
showed good predictions for the German matrix test in noise.
The eSII is based on the short-time analysis of weighted signal-
to-noise ratios in different frequency bands. In contrast to many
other approaches, including the eSII, FADE uses no empirical
reference. In this work, the FADE approach is evaluated for
predictions of the German, Polish, Russian, and Spanish matrix
test in stationary and fluctuating noise conditions. The FADE-
based predictions yield a high correlation (Pearsons R2 = 0.94)
with the empirical data and a root-mean-square (RMS) predic-
tion error of 1.9 dB outperforming the eSII-based predictions
(R2 = 0.78, RMS = 4.2 dB). FADE can also predict the data of
subgroups with only stationary or only fluctuating noises, while
the eSII cannot. The FADE-based predictions seem to general-
ize over different languages and noise conditions.
Index Terms: speech intelligibility prediction, matrix sentence
test, robust ASR features, modeling approaches

1. Introduction
Traditional macroscopic speech intelligibility models, such as
the articulation index (AI; [1]) or speech intelligibility index
(SII; [2]), aim to predict the human performance in speech
recognition tasks in noise from macroscopic signal proper-
ties like the frequency-weighted signal-to-noise ratio (SNR). In
more recent developments, microscopic models were employed
to perform speech recognition experiments [3, 4, 5], from which
the outcome of speech recognition experiments with human lis-
teners, such as the speech reception threshold (SRT), is then
statistically derived. Most macroscopic and microscopic mod-
els rely on empirical reference data for calibration or make
strong assumptions about the a-priori knowledge to the extent
that models have knowledge about the exact temporal align-
ment of the to-be-recognized signals, sometimes referred to as
”frozen speech” or ”frozen noise”. Both calibration, e.g., off-
set compensation, and ”frozen” signal approaches result in the
unfortunate situation where the models perform different tasks
than the human listeners, or perform the task at a different (usu-
ally higher) SNR. This lack of parallelism can be expected to
eventually limit the models’ ability to generalize to other noise
conditions, speech materials or languages.

In the current study, a framework for auditory discrimination
experiments [2,8] which uses an automatic speech recognition
(ASR) system and that neither requires calibration with empiri-
cal data nor the temporal alignment of the to-be recognized sig-
nal was used as a microscopic model to simulate and hence pre-
dict the outcome of the matrix test across several languages and
noise conditions as empirically determined in [6]. FADE was
shown to accurately predict speech intelligibility of the German
matrix test in different stationary noise conditions [7]. Its scope
was then successfully extended to a fluctuating noise conditions
and even basic psychoacoustical experiments [8].
The matrix sentence test was developed for several languages in
order to make speech recognition measurements as comparable
across languages as possible. The first matrix test was proposed
in [9] for Swedish and modified in [10, 11, 12] for German. Fur-
ther matrix tests were developed for—at the time of writing—
14 languages including Polish [13], Russian [14], Spanish [15],
and other languages (see overview in [16]). Each matrix test
consists of a 50-word base matrix which is used to generate
semantically unpredictable and grammatically fixed sentences,
like ”Peter sees eight wet chairs” in the English version. The
close-set structure and limited speech material makes this type
of test particularly suitable for the use with ASR-based models,
such as FADE.
In this work, FADE was evaluated for speech intelligibility pre-
dictions of matrix tests in several languages including German,
Polish, Russian, and Spanish and in stationary as well as mod-
ulated noise conditions. The predictions were compared to
those of the extended speech intelligibility index (eSII; [17, 18])
which was proposed to extend the standard SII for predictions in
modulated noise conditions. One of the main advantages of the
FADE approach over many other approaches to speech intelligi-
bility prediction is that it performs the same task as the human
listeners, i.e. recognition of speech signals at the same SNR
without knowledge about the temporal alignment. The hypoth-
esis is that this parallelism aids the models ability to generalize.
Two different front-ends are used with FADE to simulate the
speech recognition experiments and hence predict their out-
come. The first one, commonly used in ASR, extracts Mel-
frequency cepstral coefficients (MFCCs) with their first and
second order temporal derivatives, in the implementation from
[19]. The second one uses separate spectral and temporal mod-
ulation filter banks of Gabor filters to extract robust auditory-
inspired features called separable Gabor filter bank (SGBFB)
features, which were reported to improve the robustness of ASR
system compared to MFCCs [19].
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2. Methods
2.1. Multilingual matrix sentence test

For each language, the 50-word base matrix consists of ten alter-
natives per each of the five word classes (name, verb, numeral,
adjective, and object). The sentences are constructed by choos-
ing one of the ten alternatives per word class. The German and
Polish tests were recorded with a male speaker and the Russian
and Spanish tests with a female speaker. All matrix tests were
optimized for speech intelligibility measurements in noise.
The empirical data were taken from [6], which provides a de-
tailed description of the measurement procedure. Speech recep-
tion thresholds (SRT) defined as speech-to-noise ratio (SNR)
yielding 50%-word-correct performance, were measured with
native listeners for each language (i.e., German, Polish, Rus-
sian, and Spanish). All listeners were normal-hearing with pure
tone thresholds not exceeding 20 dB HL for each of the octave
frequencies between 125 and 8000 Hz. The signals were pre-
sented monaurally over headphones (Sennheiser HDA200) to
the listener’s preferred ear. To measure the SRT, the noise level
was fixed at 65 dB SPL while the speech level was varied adap-
tively for converging to the SRT [20]. The task of the subjects
was to indicate the words she/he understood on a touch screen
which displayed all 50 words of the matrix test.
Of the noise signals used in [6], a subset was examined in
this study including a test-specific speech-shaped noise (TSN)
generated from the speech material of the respective test, four
standardized ICRA noises, and a multitalker noise. Regarding
the ICRA noises, a stationary, speech-shaped noise with male
(ICRA1m) and female (ICRA1f) characteristics and spectrally
female- and male-shaped fluctuating noises (termed ICRA4f-
250 and ICRA5m-250, respectively) were considered [21]. The
fluctuating ICRA noises mimic the envelope of a single talker
with pause durations limited to 250 ms. The multitalker (MT)
babble was generated from the recordings of 12 female and 8
male competing talkers reading different English passages (c.f.
[6] for details). This noise was considered to be stationary due
to the synchrony of all talkers.

2.2. Extended speech intelligibility index predictions

To calculate the extended speech intelligibility index (eSII), the
signals were analyzed in short time frames of 1024 samples at
44100 Hz sampling rate and a frame shift of half of the frame
length. These parameters were set based on the findings in
[18, 22]. The resulting eSII was transformed into an intelligi-
bility value using a nonlinear transform derived from a mapping
function for sentence intelligibility (cf. [23, Table III, Fig. 7]).
The SRT for a given condition was calculated by selecting a
fixed reference eSII value and varying the SNR until the eSII
equals this reference value. A value of 0.26 was used as the
reference, which corresponds to the SRT of the German matrix
test in the test-specific noise condition. The test-specific noises
(TSN) were used as speech input for the eSII model as proposed
by [22].

2.3. FADE predictions

The simulation framework for auditory discrimination experi-
ments (FADE; [8]) was used to simulate the outcome of the
matrix test in different languages and various noise conditions
(c.f. [7] for details). For each language and noise condition
separately, simple ASR systems using Gaussian Mixture Mod-
els (GMMs) and Hidden Markov Models (HMMs) were trained
and tested on the noisy speech signals over a wide range of

SNRs (-24 dB to 6 dB in 3-dB steps). During the training phase,
50 (5 word classes * 10 alternatives) whole-word models with
six emitting states and one mixture component were learned for
each considered SNR. With each trained system, recognition
of the test data at the same SNRs was then performed which re-
sulted in a quadratic recognition result map. This map shows the
recognition performance depending on the training an testing
SNR (c.f. [7]) and was used to interpolate the lowest achievable
SRT which is reported as the predicted (or simulated) SRT. The
training and the testing data were generated in the same way,
by mixing the speech signals with random portions of the noise
signal, but not identical. The details of this modeling approach
were explained in [8]. The actual performance and hence the
prediction depends, above all, on the speech signal, the noise
signal, and the signal representation, i.e. the features.
For the front-end of the ASR system, Mel-frequency cepstral
coefficients (MFCCs) and separable Gabor filter bank (SGBFB)
features were considered. Here, only a brief summary of the
feature extraction steps is provided, a detailed explanation can
be found in [19].
MFCCs were calculated by performing a discrete cosine trans-
form (DCT) of the spectral dimension of a logarithmically
scaled Mel-spectrogram (LogMS). Only the first 18 DCT-
coefficients were used and concatenated with their first and sec-
ond order discrete temporal derivative in order to form a fea-
ture vector, which is referred to as MFCC features. Separa-
ble Gabor filter bank (SGBFB) features were extracted from a
LogMS by first filtering the spectral dimension with the spec-
tral modulation filters of the SGBFB, and then filtering the out-
put of each spectral filter with the temporal modulation filters
of the SGBFB. The spectral modulation filters had center fre-
quencies of 0.000, 0.029, 0.060, 0.122, and 0.250 cycles/Mel-
Band, the temporal modulation filters of 0.0, 6.2, 9.9, 15.7, and
25.0 Hz. The LogMS was calculated as follows. The linear fre-
quency axis of an amplitude spectrogram with a window length
of 25ms and a windows shift of 10ms was transformed into a
Mel-frequency axis by integrating the frequency bins from 64 to
8000 Hz into 31 equally-spaced Mel-bands. Subsequently, the
amplitude values were compressed with the decade logarithm.
MFCC as well as SGBFB feature vectors were normalized us-
ing mean-and-variance normalization on a per-utterance basis.

3. Results
The empirical SRTs measured in [6] and the predicted SRTs
using the eSII and FADE with both front-ends are reported in
Table 1.

3.1. Empirical data

The empirical SRTs from [6] in Table 1 range from about -26
dB SNR for the Russian matrix test in the fluctuating noise con-
ditions to about -4 dB for the Spanish matrix test in the mul-
titalker babbel noise condition. Independently of the language,
the multitalker babble noise resulted in the highest SRTs, and
one of the fluctuating noise conditions (ICRA4/5) in the lowest
SRTs, while the SRTs in stationary noise conditions lie in be-
tween. In general, the SRTs of the Polish test were lower than
the corresponding SRTs of the Spanish and the German test, and
higher than for the Russian test. Despite the different sex of the
speakers (male for the Polish and German test, female for the
Spanish and Russian), the SRTs for the male and female ver-
sion of the ICRA noises resulted in very similar SRTs (absolute
differences below 2 dB).
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Noise DE PL RU ES
Empirical TSN -7.2 -9.4 -10.2 -7.4

ICRA1f -8.0 -10.5 -13.4 -6.7
ICRA1m -7.4 -10.4 -13.9 -7.1
ICRA4f-250 -20.9 -23.6 -26.1 -16.9
ICRA5m-250 -19.3 -23.0 -26.3 -17.8
multitalker -6.2 -9.2 -9.5 -3.9

eSII TSN -7.2 -7.2 -7.2 -7.2
ICRA1f -5.8 -6.9 -6.4 -4.6
ICRA1m -5.4 -6.5 -6.5 -4.7
ICRA4f-250 -22.4 -20.3 -18.8 -20.1
ICRA5m-250 -15.7 -15.2 -16.5 -16.2
multitalker -7.6 -8.6 -8.2 -6.3

FADE MFCC TSN -7.8 -10.1 -8.3 -8.4
ICRA1f -8.3 -10.7 -11.3 -7.7
ICRA1m -7.7 -10.6 -12.4 -8.2
ICRA4f-250 -15.6 -16.1 -19.1 -15.1
ICRA5m-250 -15.5 -15.8 -18.6 -12.8
multitalker -5.2 -7.4 -7.5 -3.9

FADE SGBFB TSN -7.9 -10.8 -12.7 -9.4
ICRA1f -9.4 -12.4 -14.0 -9.7
ICRA1m -9.4 -12.7 -14.5 -10.1
ICRA4f-250 -19.4 -21.0 -23.7 -17.3
ICRA5m-250 -18.2 -21.1 -22.7 -16.5
multitalker -5.1 -7.3 -7.7 -3.7

Table 1: Empirical SRTs and predictions with the eSII and
FADE (with traditional MFCC and robust SGBFB front-end)
for different noise conditions and languages. The empirical ref-
erence for the eSII was the SRT achieved for TSN in German,
which resulted in a value of 0.26.

3.2. Model predictions

The eSII predicts SRTs in the range from about -22 dB for the
German test in the female version of the fluctuating noise and
about -5 dB for the Spanish text in the female version of the
stationary noise (ICRA1f). These conditions do not coincide
with the respective conditions of the lowest and highest empiri-
cal SRTs. The FADE-based predictions depend on the front-end
and range from about -19 dB and -23 dB for the Russian test in
the fluctuating noise condition with MFCCs and SGBFB, re-
spectively, to about -4 dB for the Spanish matrix test in the
multitalker babbel noise condition for both front-ends. These
conditions coincide with the respective conditions of the lowest
and highest empirical SRTs for both front-ends.
In line with the empirical data, all models predict the low-
est SRTs in the fluctuating noise conditions, independently of
the language. While FADE-based predictions show the highest
SRTs in the multitalker condition in line with the empirical data,
the eSII predicts higher SRTs for the stationary ICRA noises
than for the multitalker noise.
The FADE-based models correctly predict the SRTs of the Pol-
ish test to be lower than the corresponding SRTs of the Ger-
man and the Spanish test, and also that the lowest SRTs in each
noise condition is achieved with the Russian test. The pre-
dictions with the eSII show different language-dependent pat-
tern. It predicts only a minor language-dependence (below 2
dB) for the stationary noise conditions, whereas the empirical
data reach a difference of 6.5 dB and it doesn’t follow the em-
pirically found order of the languages for the fluctuating noise
conditions (ES>DE>PL>RU).
Furthermore, the eSII predictions show large differences (2 dB
to 7 dB) between the male and female version of the fluctuat-
ing noises. In contrast to the eSII and in line with the empirical
data, FADE-based predictions show only small differences be-

tween the male and female versions of the four ICRA noises.
Figure 1 depicts the predicted versus empirical SRTs, where
data points on the diagonal indicate perfect predictions. The
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Figure 1: Scatter plot of predicted SRTs against measured SRTs
for the eSII (filled black symbols) and FADE with traditional
MFCC (filled gray symbols) or robust SGBFB (open symbols)
front-end. The solid line is the bisecting line. The predictions
for different languages are indicated by the symbol: German
(circle), Polish (square), Russian (upward triangle), Spanish
(downward triangle). The conditions with empirical SRTs be-
low -15 dB SNR correspond to fluctuating noise conditions, and
above -15 dB SNR to stationary noise conditions.

data points of the eSII predictions for the stationary noise con-
ditions on the right hand side are rather horizontally aligned,
while the FADE-based predictions are mostly aligned to the di-
agonal. For the fluctuating noise conditions on the left hand
side, the data points of the eSII predictions seem to be ran-
domly scattered without any orientation while data points of
the FADE-based predictions show a diagonal orientation. How-
ever, the predictions with the SGBFB front-end were closer to
the diagonal.
The accuracy of the model predictions is assessed by a corre-
lation analyses. Pearson’s correlation coefficients (R2) between
predicted and empirical data, including their 95% confidence
intervals according to [24], are reported in Table 2 for the sta-
tionary, the fluctuating, and all noise conditions along with the
probability (p) of the null-hypothesis (no correlation), the root-
mean-square (RMS) prediction error, and the bias (B). Over all
languages and noise conditions, the eSII predictions show a sig-
nificantly lower correlation with the empirical data (R2 = 0.76)
than the FADE-based predictions (R2 = 0.94) and resulted in a
higher bias and RMS prediction errors. Analyzing the station-
ary and fluctuating noise conditions separately, the eSII predic-
tions show no significant correlation with the empirical data,
while the FADE-based predictions show significant correlation
coefficients exceeding R2 = 0.70.
Comparing the two front-ends that were used with the FADE
model, robust SGBFB features resulted in better predictions for
fluctuating noise conditions (R2 = 0.96 vs. R2 = 0.77) with a
lower bias (1.7 dB vs 5.7 dB) and RMS prediction error (2.1
dB vs. 5.6 dB). Across all noise conditions and languages, the
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Model Cond. R2 Interval p B[dB] RMS[dB]
eSII fluc. 0.00 [0.00 0.53] 0.90 3.6 5.6
FADE MFCC fluc. 0.77 [0.20 0.96] < 0.01 5.7 6.0
FADE SGBFB fluc. 0.96 [0.80 0.99] < 0.01 1.7 2.1
eSII stat. 0.04 [0.00 0.41] 0.43 2.1 3.3
FADE MFCC stat. 0.79 [0.50 0.92] < 0.01 0.3 1.2
FADE SGBFB stat. 0.73 [0.38 0.90] < 0.01 -1.0 1.8
eSII all 0.76 [0.53 0.89] < 0.01 2.6 4.2
FADE MFCC all 0.94 [0.86 0.97] < 0.01 2.1 3.6
FADE SGBFB all 0.94 [0.86 0.97] < 0.01 -0.1 1.9

Table 2: Statistical analysis of the predicted Speech Recognition
Thresholds (SRTs) for the group of stationary, fluctuating and
all noise conditions. Pearson’s correlation coefficients (R2) are
reported (including their 95% confidence intervals according to
[24]) along with the probability (p) of the null-hypothesis (no
correlation), the root-mean-square (RMS) prediction error, and
the bias (B) for the eSII-based and the FADE-based predictions.
Superscript t indicates the used of the traditional MFCC front-
end and superscript r the use of the robust SGBFB front-end.

FADE model using SGBFB features yields the lowest bias (-0.1
dB) and RMS prediction error (1.9 dB).
To summarize, the eSII predicts well only a very general trend
showing lower SRTs for fluctuating noise conditions than for
the stationary noise conditions, but it fails to predict most of the
empirically observed effects between languages and maskers.
The FADE-based predictions, in particular when using the ro-
bust SGBFB front-end, are mostly in line with the empirical
data.

4. Discussion
It was shown that the microscopic, ASR-based FADE modeling
approach outperforms the macroscopic eSII modeling approach
in predicting SRTs of matrix tests in noise across languages.
The eSII did not predict language-specific effects. In the test-
specific noise (TSN) condition, where the average speech and
noise spectrum are matched, the eSII predicted the same SRT
for each language under test (cf. Table 1). Further, across lan-
guages and the stationary or fluctuating noise conditions no sig-
nificant correlation with the empirical data was found, which
suggests that for the considered class of noises differences be-
tween languages can not be explained macroscopically by the
average portion of the speech signal that is audible for a lis-
tener.
In contrast, FADE predicted the language-specific effects very
well. It probably learned that certain portions of the speech
signal are more important than others, in contrast to the eSII
which uses fixed frequency-dependent weights, which was then
correctly reflected in the outcome if these portions of the sig-
nal were not available due to a masker. Since FADE performs
the same task, i.e., word recognition and works on noisy data
at the same ”working point”, i.e. SNR, that human listeners en-
counter in listening tests, it seems to face similar difficulties and
hence performs similarly to human listeners on the considered
matrix tests. It is probably this parallelism that enables FADE
to perform predictions that are unencumbered by any empirical
reference and constitutes its predictive power, i.e., its ability to
generalize.
Models that require calibration to empirical data can in the best
case predict the differences between the reference and other
tested conditions but are not able to explain the speech recogni-
tion process in human listeners by itself. Also, generalization of

the outcomes and better understanding of human performance
is limited when predictions are made with models requiring per-
fect a-priori knowledge about the signals to be recognized since
such information is not available to human listeners.
Comparing the FADE approach with two different ASR front-
ends, it was shown that the robust SGBFB front-end is better
suited for accurate predictions in fluctuating noise conditions.
The threshold predicted with a MFCC front-end can model hu-
man performance very well in stationary noise conditions but
was not able to benefit from fluctuations in noise to the same
extent as human listeners did. Therefore, independent of lan-
guage, the SGBFB features seem to be a more reasonable model
of human auditory processing than MFCC features. However,
the predicted SRTs in the fluctuating noise condition using the
SGBFB front-end are still slightly above the average perfor-
mance of human listeners and a more robust front-end could
possibly further improve the FADE-based predictions.

4.1. Future work

The FADE approach works on processed signal and therefore
might also predict the effect of signal processing algorithms on
speech intelligibility, which could be evaluated in future stud-
ies. Further, acknowledging the fact that hearing loss might be
explained by suboptimal signal processing, the effect of hearing
loss on speech intelligibility might be modeled by incorporating
typically assumed signal processing deficiencies into the feature
extraction of the FADE model.

5. Conclusions
The most important findings of this work can be summarized as
follows:

1. The microscopic FADE model with robust SGBFB front-
end accurately predicts empirically found language-
specific and noise-specific influences on the outcome of
the matrix test, which results in a correlation coefficient
of R2 = 0.94, a bias of -0.1 dB and a root-mean-square
prediction error below 2 dB.

2. In contrast, the macroscopic eSII model was found to
only predict that speech reception thresholds in fluctuat-
ing noise conditions were lower than in stationary noise
conditions, but neither language-specific differences, nor
masker-specific differences within the subgroups of sta-
tionary and fluctuating noises.

3. Particularly for the fluctuating noise condition, the use of
the physiologically-inspired robust ASR-features (SG-
BFB) resulted in higher correlations with the empirical
data (R2 = 0.96) and a lower RMS prediction error (2.1
dB) compared to using MFCC features (R2 = 0.77, RMS
= 6.0 dB).

4. FADE, unlike many other speech intelligibility mod-
els, does not use an empirical reference which avoids a
potential language-bias and allowed to accurately pre-
dict the effect of specific speakers/languages on speech
recognition.
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