
Speaker age classification and regression using i-vectors

Joanna Grzybowska, Stanisław Kacprzak

AGH University of Science and Technology, Poland
{gjoanna,skacprza}@agh.edu.pl

Abstract

In this paper, we examine the use of i-vectors both for age
regression as well as for age classification. Although i-vectors
have been previously used for age regression task, we extend
this approach by applying fusion of i-vectors and acoustic fea-
tures regression to estimate the speaker age. By our fusion we
obtain a relative improvement of 12.6% comparing to solely i-
vector system.

We also use i-vectors for age classification, which to our
knowledge is the first attempt to do so. Our best results reach
unweighted accuracy 62.9%, which is a relative improvement
of 16.7% comparing to the best results obtained in age classifi-
cation task at Age Sub-Challenge at Interspeech 2010.
Index Terms: speaker age recognition, regression, classifica-
tion, computational paralinguistics

1. Introduction
The cues about the age of a person can be observed in the
voice due to numerous anatomical and physiological aspects
that change during our lifetime [1]. Learning about the age of
the speaker fulfills the profile of a speaker [2–5]. Automatic
speaker age recognition can have forensic and commercial ap-
plications, e. g. narrowing down suspects or adjusting the per-
formance of an Interactive Voice Response system to a specific
age group.

In recent years many methods have been applied to recog-
nize the age of the speaker. We can distinguish two approaches
within age recognition: age estimation and age classification.

For age estimation different types of regression methods
have been used. The most recent are based on the i-vector ex-
traction [6, 7]. The i-vectors were introduced in [8] and were
initially used for speaker recognition. In [6] the authors use
Within-Class Covariance Normalization (WCCN) for session
variability compensation. They also apply the Least Squares
Support Vector Regression (LSSVR) to estimate the age of the
speaker. In [7] the authors examine the Artificial Neural Net-
work (ANN) back-end for an i-vector based age estimation sys-
tem. They report that the change of back-end for age estimation
did not affect the accuracy significantly and focusing more on
front-end processing is therefore advised.

The age classification problem was previously examined
in [9–12]. In the Age Sub-Challenge at Interspeech 2010 the
task was to assign a correct age class to an unseen utterance.
The Support Vector Machine (SVM) baseline for age and gen-
der classification is provided in [9]. In [11] the authors present
an automatic speaker age and gender identification approach
which combines seven different methods at both acoustic and
prosodic levels. In [10] the authors propose a fuzzy SVM for
age and gender classification. In [12] the authors use GMMs
with SVM followed by the linear Gaussian back-ends and the

logistic regression-based fusion. The best results are obtained
with the fusion of several sub-systems.

In our paper we examine both approaches to age recogni-
tion, namely age regression and age classification, and we re-
port our results for the same database. To our knowledge, the i-
vectors have not been previously used for the task of age classi-
fication. For the age regression task, we focus on front-end pro-
cessing by applying two approaches, the i-vectors and acoustic
features, and their fusion. We also combine age regression with
age classification by mapping the results from the regression
system to age classes and we compare this approach with age
classification based on cosine distance scoring. We also exam-
ine the effect of WCCN on our data.

2. Speaker age regression
Speaker age regression is the task of predicting from an unseen
utterance Xtest the age of the speaker ytest as closely matched
to the speaker’s true age as possible. The prediction system is
trained on a set of N training utterances Xn with their corre-
sponding age labels yn.

To provide the reference level of accuracy (prior) for our
database we use the average age of the training data as an esti-
mation function, g(Xtest) = 1

N

∑
n yn, where N is the number

of training segments and yn is the actual age of nth training
speaker.

2.1. Front-end

In our first subsystem, we use Mel Frequency Cepstral Coef-
ficients (MFCC) as input features for the i-vector extraction.
We calculate 19 MFCCs with their energy, deltas and double
deltas. 60-dimensional feature vectors are normalized using
Cepstral Mean and Variance Normalization (CMVN). We use
those features both in regression and classification tasks. In our
second subsystem we use a set of 450 acoustic features briefly
described in section 2.3.

2.2. I-vectors for age estimation

In an i-vector extraction, a low dimensional total variability
space T accounts for both channel and speaker variabilities. I-
vectors are widely used for different tasks in the speech pro-
cessing domain. The details concerning the i-vector extraction
can be found in [8]. In practice, we use the Matlab MSR Iden-
tity Toolbox [13] for the i-vector extraction. In our work, the
i-vector space dimensionality is 400, like in [6] and [7].

2.3. Acoustic features for age estimation

Feature sets were extracted with openSMILE [14] and consist of
450 features for each utterance in aGender corpus [15]. Those
acoustic, prosodic and voice quality features are low-level de-
scriptors (e. g. MFCCs, LSP Frequency, F0, voicing probability,
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Jitter, Shimmer) and their statistics (e. g. mean, standard devi-
ation, skewness, kurtosis, percentile 1/99) [9]. Further in our
paper we refer to those features as acoustic features.

We standardize our training and testing data by subtracting
mean and dividing by standard deviation of the aGender testing
set (17 332 utterances).

2.4. Back-end

To compensate for session and channel variability we use
WCCN for the speakers as classes. It was previously shown
in [6] that this approach improves the age regression accuracy.
The details concerning WCCN can be found in [16].

As shown in [6], the LSSVR estimates speakers’ age more
accurately than the SVR. It is also faster in model training and
faster to tune because of fewer hyper-parameters. Thus, in our
work we use the LSSVR. In practice, we use the LS-SVMlab
toolbox [17] with the radial basis function (RBF) kernel. It was
shown in [18] that it gives better age predictions than the linear
kernel. We use 10 fold cross-validation on a subset of training
set to tune the hyperparameters: the regularization parameter
γ and the Gaussian width σ2. In our experiments, the training
data comprises of females, males and children.

2.5. I-vectors and acoustic features fusion

In this experiment we combine the results from the i-vector and
the acoustic subsystems. In this new approach, the predicted
age from both subsystems is used as an input to higher level
regression model. For this purpose we use the Generalized Re-
gression Neural Network (GRNN) [19] designed using Matlab
newgrnn function.

3. Speaker age classification
Speaker age classification is the task of determining from an
unseen utterance Xtest the age class of the speaker ytest corre-
sponding to the speaker’s true age. The classification system is
trained on a set of N training utterances Xn with their corre-
sponding age class labels yn. The reference level of accuracy
(prior) for a classification system with N possible age classes is
g(Xtest) = 1

N .

3.1. Back-end

Our speaker age classification system is based on the i-vectors.
We extract one i-vector for each speaker in the aGender
database. Then, we use two different approaches for reporting
our results:

1. Classification based on the cosine distance scoring (CDS
classification).

2. Classification by mapping the results from the regression
system (mapped classification).

In the first approach, we use the cosine distance scoring

CDS =
wT

testwtar,a

‖wtest‖‖wtar,a‖
(1)

to measure the similarity between two i-vectors – the test i-
vector (wtest) and the i-vectors of the target age class a (wtar,a).
This score is used to make the final classification decision. The
i-vector of the target age class is the average of the i-vectors for
all training speakers in the age class a, i. e.

wtar,a =
1

Na

Na∑
i=1

wi,a, (2)

where Na is the number of the training speakers in the age class
a and wi,a is the i-vector of the training speaker i from the age
class a.

In the second approach we use the predicted age labels from
the regression system ytest and the gender labels to map the
speakers to seven age classes described in section 4.1.

4. Experimental setup

To train the Universal Background Model (UBM) and T-matrix
we use about 90 hours of speech from YouTube, mostly in En-
glish. We extend this database with other databases in German
[15, 20–24] – they contain approximately 19 hours of speech.
An extension of only English speech was performed to reduce
the language mismatch between training and testing databases.
Such a mismatch significantly decreases the performance of the
i-vector based age estimation system [6]. Furthermore, the au-
thors in [25] report that for an accent recognition system, hyper-
parameters (UBM and T-matrix) should be trained on as closely
matched data as possible. The UBM consists of 1024 mixture
components.

4.1. Database description and modifications

We used the aGender database to evaluate the performance
of our approaches. This database was used in the Age Sub-
Challenge at Interspeech 2010 where the task was to classify
an unseen utterance to one of seven age and gender classes:

ch children (age 7-14)
yf young females (age 15-24)

ym young males (age 15-24)
af adult females (age 25-54)

am adult males (age 25-54)
sf senior females (age 55-80)

sm senior males (age 55-80)

The aGender database is comprised of about 47 hours of
speech (free wording and fixed phrases) recorded in up to 6 ses-
sions for each speaker. Each speaker produced on average 68 ut-
terances. The average duration of an utterance is 2.58 seconds.
The aGender database is divided into training (471 speakers),
development (299 speakers) and testing set (184 speakers). The
age range for speakers in aGender database is 7-80.

Whereas acoustic features described in section 2.3 are cal-
culated for each utterance for each speaker, the i-vectors were
extracted from concatenated utterances per speaker. This con-
catenation was motivated by the fact that the i-vector extraction
should be performed on rather longer utterances. Mean utter-
ance length after concatenation is 88 seconds.

In our work, we also examined the influence of WCCN on
the recognition accuracy. The authors in [12] did not observe
any significant gain due to the use of the the channel compen-
sation technique for utterances in the aGender database. They
assume it is caused by the short duration of testing utterances.
For this reason, we partition the previously concatenated utter-
ances to obtain longer utterances and then perform WCCN on
the extracted i-vectors. We chose to partition utterances of at
least 30 seconds. For such an utterance we create N new seg-
ments such as the new segment comprises of random 70% of
baseline concatenated utterance. As a result, we obtain N+1
utterances per speaker, which we call segments in this paper.
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4.2. Performance metric

For the age regression evaluation we use Mean Absolute Error
(MAE) and Pearson’s correlation coefficient. MAE is defined as

MAE =
1

N

N∑
n=1

|ŷn − yn| (3)

where N is the number of testing segments, ŷn is the predicted
age and yn is the actual age of nth speaker. The Pearson’s cor-
relation coefficient between true age yn and the age predicted
by a regression model ŷn is our second performance metric:

ρ =
1

N− 1

N∑
n=1

(
ŷn − µŷ

σŷ

)(
yn − µy

σy

)
(4)

where µŷ and µy are mean values of estimated and true ages, re-
spectively; σŷ and σy are standard deviation values of estimated
and true ages, respectively.

We also calculate the relative improvement of MAE to the
prior system in order to provide more objective measure of com-
parison to the baseline system in [6]. Direct MAE comparison
would not be reliable because the age range used in our work
was wider than in [6]. We define the relative improvement
iMAE% as follows:

iMAE% =
MAEprior −MAE

MAEprior
· 100% (5)

For the age classification evaluation we use unweighted ac-
curacy (%UA), which is not weighted with respect to the num-
ber of instances per class. This measure was also used to evalu-
ate the Age Sub-Challenge results at Interspeech 2010, because
the distribution of speakers among classes in the used aGender
database is not balanced.

5. Results and discussion
All our results are reported jointly for all the speakers: children,
females and males.

5.1. Baseline regression results

The authors in [6] and [7] report their results separately for
males and females. The MAE in [6] is 6.53 for males and 5.78
for females, ρ is 0.73 for males and 0.81 for females. The MAE
in [7] is 6.35 for males and 5.49 for females, ρ is 0.73 for males
and 0.81 for females. The authors in [6] provide MAE val-
ues for prior estimator for their training data. Based on those
values, we calculated the corresponding relative improvement
iMAE%, which is 35% for males and 45% for females. Jointly
for all speakers, MAE is improved by 41% relative to the prior
for their database.

5.2. Our regression results

5.2.1. I-vector based subsystem

We perform 15-fold cross-validation on a database comprising
of the aGender training and development set. In the i-vector
subsystem this database consists of 770 utterances concatenated
per speakers. Table 1 presents MAE, ρ and iMAE% for the i-
vector based subsystem with and without WCCN jointly for
males, females and children. With the WCCN transformation
we were able to decrease the MAE by 0.28, thus we use this
configuration in the fusion of the i-vector and the acoustic fea-
tures based subsystems. In table 2 we also show results with the

Table 1: Regression scores for (1) reference estimation func-
tion, (2) the i-vector based subsystem with and without WCCN
transformation, (2) acoustic features based subsystem with and
without feature standardization, (3) and GRNN fusion of the
i-vector subsystem with WCCN and the acoustic features sub-
system with standardization.

Configuration MAE ρ iMAE%

prior 19.33 0.00 0%
i-vectors 9.96 0.81 48%
i-vectors (WCCN) 9.68 0.83 50%
Acoustic features (no standardization) 14.46 0.56 25%
Acoustic features (standardization) 12.96 0.75 33%
GRNN fusion 8.46 0.86 56%

Table 2: Regression scores for the i-vector based subsystem
with WCCN transformation for males, females and children.

speakers MAE ρ iMAE%

males 10.63 0.76 39%
females 9.77 0.80 45%
children 6.47 0.18 77%

gender division in the testing phase. Comparing our results to
the results in [6] and [7], MAEs are bigger in our case, which is
caused by wider age range and thus greater prior MAE for our
database. In terms of iMAE% for all speakers our system reaches
50%, while the one in [6] reaches 41%.

5.2.2. Acoustic features based subsystem

In the acoustic features subsystem we use 53 074 utterances for
770 speakers. We predict the age label ŷn for each utterance
and the final age of each speaker is the average age of predicted
age labels for the corresponding utterances. In this subsystem
we also perform 15-fold cross-validation. The results for all
speakers are presented in table 1. With features standardization
we were able to decrease the MAE by 1.5, thus we use this con-
figuration further in the fusion of the i-vector and the acoustic
features based subsystems. For standardized acoustic features
based subsystem, MAE for males is 13.51 and iMAE% is 22%.
For females, MAE is 12.44 and iMAE% is 29%. For children,
MAE is 12.91 and iMAE% is 55%. Pearson’s correlation coeffi-
cient ρ for males, females and children is 0.65, 0.73 and 0.46
respectively.

5.2.3. Fusion of i-vector and acoustic features based subsys-
tems

We combined the results obtained from the i-vector and the
acoustic subsystems by using predicted age as input to another
regression model. Table 1 presents MAE, ρ and iMAE% obtained
by GRNN from 15-fold cross-validation. Fusion of both subsys-
tems (the i-vectors with WCCN and the acoustic features with
standardization) allows us to achieve better results. MAE of
8.46 was achieved with GRNN model. MAE for males is 9.19,
for females it is 8.90 and for children it achieves 4.55. With
this fusion we obtain the improvement of MAE of 1.22 com-
paring to our subsystem based solely on the i-vectors (which
is a relative improvement of 12.6%) and 4.5 compared to our
subsystem based solely on the acoustic features. Jointly for all
speakers, MAE is improved by 10.87 comparing to the prior.
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5.3. Baseline classification results

In [26] the authors compare their age and gender classification
results with human performance on the same database. The
overall classification accuracy for human listeners was 55%.
Human perception of age is influenced by numerous phonetic
and non-phonetic factors: speaker, listener, speech-sample and
task-related [1]. The results for baseline systems are reported
for the aGender development set. The %UA result for SVM
baseline system for the age and gender classification task (clas-
sification to one of seven classes) was 44.2% [9]. In [11] the
%UA result for the age and gender classification reached 50.3%
for the system consisting of the fusion of seven proposed meth-
ods. In [10] the obtained %UA for age and gender classification
task is 45.2% using fuzzy SVM method. The best results in Age
Sub-Challenge at Interspeech 2010 were obtained in [12], the
%UA is 53.9%, where the authors use fusions of several sub-
systems.

5.4. Our classification results

For the task of classification, we use the aGender training set as
our training data and the aGender development set as our testing
data, thus we can directly compare our results to other results
reported in the literature. Table 3 presents the results for our
two approaches to classification.

Table 3: Classification results based on (1) cosine distance
scoring between test i-vector and i-vectors of target age class
and (2) based on mapping the results from i-vector based re-
gression system to age classes.

Classification approach %UA
CDS classification 62.9%
mapped classification 54.9%

With the CDS classification, we obtain %UA = 62.9% while
the best result obtained in the age classification task at the Age
Sub-Challenge at Interspeech 2010 on the aGender database
was 53.9%. This is a relative improvement of 16.7%. Also,
our score outperforms the classification accuracy for human lis-
teners (55%) reported in [26].

In our second approach we examined the influence on ac-
curacy of mapping the results from the regression system to
the age classes. We obtained %UA = 54.9%, thus the %UA
decreased by relative 12.7%. This result indicate that the age
classification approach based on comparing testing utterances
to previously trained age class models is more accurate in deter-
mining the age class of the speaker than mapping the regression
results to the age classes.

Table 4 shows types of confusions made by our CDS age
classification system for the age classes described in section 4.1.
We can see that the classifier detects gender with high accuracy.
For females the accuracy is 96.1%. The remaining 3.9% of fe-
males were always recognized as children, none of the females
were recognized as males. Moreover, most of the females miss-
classified as children were young (70%). The rest (30%) were
adult, none of the missclassified women were senior. These re-
sults can be explained by the similarities in frequencies between
children and young female voices (high fundamental frequency
for children and young females).

For males the accuracy is 96.0%. The remaining 4% of
males were always recognized as senior females. The major-
ity of mistakes (78%) were made for young males, and the rest

(22%) for senior males. These results can also be explained
by the similarities between frequencies for male and senior fe-
male voices, for whom the fundamental frequency decreases
with age.

Children were classified with 57.9% accuracy. The most
miss-classifications (21.1%) were made with young females.

Table 4: Confusion matrix for age classification system based
on cosine distance scoring

Class. Predicted class
acc.(%) ch yf ym af am sf sm

ch 57.9 21.1 5.3 7.9 0 7.9 0
yf 5.4 70.3 0 21.6 0 2.7 0

True ym 0 0 81.3 0 12.5 6.3 0
class af 2.3 13.6 0 34.1 0 50.0 0

am 0 0 33.3 0 31.0 0 35.7
sf 0 2.0 0 16.0 0 82.0 0

sm 0 0 1.8 0 16.1 1.8 80.4

6. Conclusions
In this paper we use the i-vectors modeling for age estimation
as well as for age classification. We report our results on the
aGender database, for which the age range of the speakers is
wider and thus the prior Mean Absolute Error (MAE) is higher
than for the databases used previously in the literature for the
age regression task. To compare our results with the baseline
results we use the relative improvement to the prior value.

In age regression, by performing WCCN on partitioned ut-
terances in a way described in the paper, we decrease MAE by
0.28. By the GRNN fusion of the i-vectors and the acoustic fea-
tures we obtain the best relative improvement 56%, while for
our subsystem based solely on i-vectors the relative improve-
ment is 50%, and our baseline relative improvement in [6] is
41%. In our regression approach, higher recognition rate was
obtained for females than for males. To our knowledge, our
work is the first attempt to estimate the age of children using
i-vectors.

In age classification using i-vectors the accuracy reached
62.9%, which is the relative improvement 16.7% over the best
result at Age Sub-Challenge at Interspeech 2010. In our classifi-
cation approach, we obtained higher accuracy for males than for
females, differently than in age regression approach, which sug-
gest that those two approaches are complementary. Age classi-
fication based on the CDS scoring gave better results than map-
ping the results from the regression system. But age classifica-
tion has also drawbacks over the age regression approach, i. e.
two speakers with small age difference can be placed in differ-
ent age groups. To overcome this problem we plan to investigate
the age classification approach with narrower and overlapping
age intervals.

We also plan to: (1) fuse the i-vectors and the acoustic fea-
tures for the age classification task, (2) examine the influence
of WCCN on the acoustic features, (3) use the a priori knowl-
edge about the age distribution in the society to model the age
classes.
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[1] S. Schötz, “Perception, analysis and synthesis of speaker age,”

Ph.D. dissertation, Lund University, 2006.

[2] M. Witkowski, M. Igras, J. Grzybowska, P. Jaciòw, J. Gałka, and
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