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Abstract

This paper focuses on the synthesis of bird songs using Hidden
Markov Models (HMM). This technique has been widely used
for speech modeling and synthesis. However, features and con-
textual factors typically used for human speech are not appro-
priate for modeling bird songs. Moreover, while for speech we
can easily control the content of the recordings, this is not the
case for bird songs, where we have to rely on the spontaneous
singing of the animal. In this work we briefly overview the
characteristics of bird songs, compare them to speech, and pro-
pose strategies for adapting the widely-used HTS (HMM-based
Speech Synthesis System) framework to model and synthesize
bird songs. In particular, we focus on Chaffinch species and a
database of recordings of several song bouts of one male bird.
At the end we discuss the synthesis results obtained.

Index Terms: context-dependent HMM, HMM based synthe-
sis, parametric synthesis, bird song synthesis

1. Introduction

While current efforts in realistic sound synthesis focus on imi-
tating, by means of computational models, sounds produced by
objects, musical instruments or the human voice, the synthesis
of realistic non-human animal acoustic vocalizations lags sig-
nificantly behind, unable to meet the demands in as varied areas
as virtual reality, animation, robotics, animal assisted therapy,
applied biology or psychology.

We might contend that what is really necessary for a
general-purpose synthesizer is a good probabilistic model of
the relevant time-varying sound characteristics. For the case
of human speech, given a probabilistic model with the appro-
priate contextual description, it has been shown that a linear
source-filter decomposition together with specific signal mod-
els (e.g. sinusoids plus noise) for the excitation component are
sufficient for producing intelligible speech. Starting from this
basic framework, several refinements have been proposed over
the last decade that greatly improve the quality and naturalness
of the synthetic sound, as well as address the expression of emo-
tion in speech.

This paper focuses on bird songs and we propose to model
them with Hidden Markov Models (HMM), a well established
method in speech synthesis [1]. What has made this method
work really well for speech is not just the statistical approach
itself, but to a great extent the acoustic parameterization and
the specific signal models resulting from decades of focused re-
search on speech. For our purpose, it is not sufficient to adapt
standard methods used in speech synthesis. On one hand, bird
songs exhibit strong and rapid frequency modulations that re-
quire non-stationary analysis methods to accurately compute
acoustic features. On the other hand, contextual description
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used for speech is not applicable to bird vocalizations, since
the syntactic organization is very different.

In fact, human language uses much more complex struc-
tures than animal communication systems. From a limited set
of speech sounds we can create an infinite number of meaning-
ful sentences using grammar. Many animal vocalizations are
organized in simpler structures best described as a phonological
syntax [2]. Vocalizations consist of a set of vocal units that are
combined to create strings which are in turn organized in dif-
ferent patterns. Despite their enormous variation among animal
vocalizations, up to date there is no evidence of vocal syntactic
structures extending beyond that of a probabilistic finite-state
grammar [3]. In the case of birds, for instance, first order Hid-
den Markov Models (HMM) can already explain complex se-
quencing rules of birdsong [4].

Visual and acoustic behavioral observations allow for better
understanding the behavior of individuals within a population
or species. The description and knowledge of a species’ vocal
repertoire allow searching for meaningful information in dif-
ferent sounds. Ethological observations are used to understand
the context-specificity of vocal signals exchanged between con-
specifics and playback experiments are used to clarify the func-
tion and referential use of the emitted sounds (mother calls to
young, alert messages, aggressive alarms). Scientists work-
ing on animal communication mostly employ simple synthetic
calls and/or rudimentary audio transformations for playback ex-
periments (i.e. reproducing pre-recorded animal vocalizations
through a loudspeaker). Recent research shows an increasing
interest in re-synthesis of vocalizations from a reduced set of
controls of a physical model, especially for bird songs [5, 6].
Resynthesized signals are used in experiments where HVC neu-
ronal activity is evaluated to assess the model performance.

This papers proposes a method for bird song synthesis
based on Hidden Markov Models. In section 2, we describe
our system, based on three main steps: database creation, fea-
ture extraction, and context and HMM models definition. In
section 3, we present and discuss the synthesis results and in
section 4 we summarize our main contributions and propose fu-
ture refinements.

2. Methodology
2.1. Sound database

We use the Chaffinch (Fringilla coelebs) dataset provided by
coauthor R. Lachlan. It consists of recordings of over 700 indi-
viduals, carefully annotated specifying the specimen, recording
location, date and equipment used. Most recordings have been
performed with directive microphones, which greatly help to
reduce the presence of undesired acoustic sources. The dataset
has been annotated with Luscinia [7], an open source software
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Figure 1: Screenshot of the spectrogram and segmentation in
Luscinia software. The estimated fO contour is plotted in brown
color on top of the spectrogram. Syllables and elements are
respectively drawn in red and green colors.

for bioacoustics archiving, measurement and analysis. Many of
the bird songs in the dataset have been segmented hierarchically
by experts into song, syllable and element segments. Luscinia
offers a spectrogram view of the bird songs, where users can
control several parameters to enhance the visualization of the
vocalization (e.g. dynamic range). In addition, one can indicate
the regions over the spectrogram of a bird song where the vo-
calization signal is present, what is really useful when multiple
sources are present in the recording. This procedure is used for
performing a robust semi-supervised analysis, obtaining funda-
mental frequency and energy estimations among other features.
Analysis data supervised by experts is provided for many of the
bird songs in the dataset. Figure 1 shows a screenshot of the
Luscinia interface showing the spectrogram and the segmenta-
tion of a chaffinch recording.

For our experiments we have considered several recordings
of the same individual realized on the same day. Those record-
ings are segmented into 27 songs that correspond to 5 different
song types, as specified in Table 1. Chaffinches typically have a
repertoire of 1 to 7 distinct songs.

song | #
sl 6
s2 5
s3 4
s4 10
s5 2

Table 1: Number of recordings for each different song type.

2.2. Feature extraction

In general, there are several constraints we have to consider
for obtaining a good acoustic representation: (1) It must be
possible to resynthesize a vocalization from its acoustic repre-
sentation with high quality; (2) A low-dimensional and locally
stationary representation is preferable, since it has the advan-
tage of facilitating the statistical modeling as well as requiring
fewer amounts of data for training. Significant amplitude and
frequency modulations should be extracted and parameterized;
(3) It is usually preferable to have semantically meaningful fea-
tures, easy to interpret; (4) The representation should cover
some excitation characteristics of the target species particularly
difficult to model, such as biphonation or strong modulations in
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Figure 2: Screenshot of the spectrogram and segmentation
in Luscinia software. Two different frequency trajectories (in
brown) overlap in the marked area
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Figure 3: Non-stationary analysis of a Chaffinch vibrato com-
pared to Luscinia features.

certain bird species [8].

One expected issue with animal vocalization recordings is
that they are often affected by reverberation (in our case mostly
caused by reflections from trees). In addition, we find rapid and
strong frequency and amplitude modulations for many species,
causing standard analysis methods to over-smooth the extracted
features. Non-stationary analysis and de-reverberation tech-
niques are then essential for improving the accuracy of the
acoustic measures. Figure 3 illustrates this fact, showing the fre-
quency estimations obtained for an excerpt of a Chaffinch bird
song which exhibits a deep frequency modulation of a roughly
200 Hz rate. The estimations computed by Luscinia (in blue)
are obtained by an algorithm based on the harmonic summation
model and applied to a de-reverberated spectrogram (in gray).
Those estimations are further refined using a recently proposed
non-stationary analysis method (in red) [9].

Considering the mentioned requirements, our acoustic rep-
resentation for bird songs is based on 6 different features , de-
tailed in Table 2. In particular we propose a simple model
with a single sinusoid, where features are computed each 0.5
ms. We used the energy and frequency features resulting from
the Luscinia semi-supervised analysis. Vibratos segments were
manually labeled. For each marked vibrato segment, frequency
contour was automatically decomposed into a baseline contour
(free of modulations) and a residual. This baseline contour was
estimated by interpolating the frequency points of maximum ab-
solute slope. The slope was computed by the convolution of
the estimated frequency contour with a linear decreasing ker-
nel (e.g. [L,L—1,..,0,...—L+1,—L]). In our experi-
ments, the kernel had a length of 15 ms. We can see in Fig-
ure 4 one example of the vibrato analysis of an excerpt of a bird
song, including the estimated depth and rate. The sinusoidal
amplitude also may present significant periodic or aperiodic
modulations. We model those modulations with two features:
tremolo depth and resonance frequency. Figure 5 illustrates
this approach showing the frequency modulation and the esti-
mated resonance frequency. Note that the amplitude peaks oc-
cur around the crossing times between the resonance frequency



0 residual and model

g

frea )
8
( \
|
|
|

depth cents) frea (cents)

phase (rad

3500 T T T T

— 3000

2500 \/, \\7 / v

2000 L L L L L

freq (Hz

0.08 T

0.06 |

amplitude

0.07
time (sec)

Figure 5: Amplitude modulation analysis. The top figure shows
the estimated sinusoidal frequency and resonance frequency.
The bottom figure shows the amplitude feature.

and the frequency feature.

Characteristic | Acoustic features

Sinusoid Energy, frequency

Vibrato Depth, rate

Tremolo Depth, resonance frequency
Table 2: Features considered.

One issue we found was that for some recordings some-
times elements could overlap. One example can be seen in Fig-
ure 2, where two different frequency trajectories overlap in the
marked area. Overlapping is not allowed in the HMM training
since we use a single stream for the frequency feature. Thus, we
opted for cutting some data, although it is not the ideal solution.
This is something to be improved in the future.

2.3. HMM models and contextual factors

In general, for modeling a particular species, we should use
a set of contextual descriptors that characterize the context-
specificity of its vocal signals and that are aligned with the pro-
posed requirements of the synthesizer. In speech, the acoustic
features greatly depend on the context. Speech synthesizers take
into account several linguistic contexts such as phoneme in-
formation, lexical stress, tone, pitch accent, and part-of-speech
(POS) information. By contrast, in animal vocalizations in gen-
eral and bird songs in particular, the context is simpler and the
sound characteristics are less context-dependent [2].

Each recording in the database corresponds to one song.
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Figure 7: f0 and amplitude features generated by the HMM
models

One limitation is that even though the hierarchical segmentation
provided by experts specifies syllable and element segments, it
does not identify repetitions of the same syllable. As we need to
specify the context of each model using contextual labels (aka
full context). In our case for HMM training, we manually in-
spected each song and labelled each syllable with a letter (in
alphabetical order), using the same letter for identifying repeti-
tions. This is a (rather easy) task not requiring an expert, so it
can be automatized by estimating dynamic time warping based
distances between syllable segments. For instance, the syllabic
transcription of the song in Figure 6 is

aabbbbbcddef

In addition we specify the song type by manually comparing the
fO curve between recordings. One good aspect of this approach
is that the syllable name does not depend on the song type, but
just on the position within the song.

As mentioned, syllables are segmented into elements. A
finer segmentation is better for the HMM modeling for captur-
ing more details of the fO contours. In our case, HMM models
are assigned to element segments, pauses within syllables and
silences between syllables. We label HMM models with the
syllable name plus a number indicating the position within the
syllable (only if there are several elements). For Figure 6 the
HMM model transcription is

sil a0 pau al sil a0 pau al sil b sil b sil
b sil b sil b sil cO pau cl pau c2 sil d sil
d sil e sil f sil

In the HMM training process, similar states and model pa-
rameters among several HMMs are automatically clustered in a
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Figure 8: Vibrato and tremolo estimated features

Figure 9: Vibrato and tremolo features generated by the HUM
models

hierarchical tree structure [10] by means of the Minimum De-
scription Length (MDL) criterion [11]. This hierarchical pro-
cess is conducted answering a set of questions about the context
labels. In our case, after several experiments, we ended using
only three contextual labels for each HMM model: song type,
syllable type and element type.

We use the HTS (HMM-based Speech Synthesis System
[12]) framework to model and synthesize bird songs. The HMM
configuration and training steps used in training of the model
overall follow the HTS v2.3 demo scripts. The energy of the
fundamental is modeled as a 1-dimensional continuous stream,
f0 as a 1-dimensional multi-space distribution (MSD) stream to
allow regions without pitch, and the vibrato and tremolo fea-
tures are jointly modeled as a 4-dimensional continuous (non-
MSD) stream as they are correlated and this way they are clus-
tered based on the same contextual factors. In these experi-
ments we disabled global variance in the parameter generation
step. We use the standard 5 state model, but do allow a slightly
lower minimum duration of 3 frames. MDL clustering (with
default hyper-parameters), reduces the total of 1325 context-
dependent states (over the model’s 5 states) to 185 leaf nodes
(around 14 %).

3. Results

We have re-synthesized the songs in our database using the
trained HMM models. Figures and examples are available on-
line from [13].

In Figures 6 and 8 we show the features estimated for a
given bird song recording. For this particular recording, the
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Figure 10: fO0 and amplitude features generated by the HUM
models without extracting the modulations for the second sylla-
ble type.

syllabic transcription is
aabbbbbcddef

Figures 7 and 9 show the features generated by the HMM mod-
els out of the same transcription, in this case forcing the model
duration to be aligned with the recording segmentation. As ex-
pected, HMM predicted features are smoother than input fea-
tures. Time quantization in HMM states is also noticeable, es-
pecially in long elements such as those typically found in the
ending part. On the other hand, modulation features seem to
perform promisingly well. For instance, in Figure 10 we can
see the synthesis result obtained for the same song when mod-
ulations are not extracted for the second syllable type. Clearly,
the fO contour is over smoothed, and many relevant details are
missing.

It is challenging to assess how good the synthesis is. We
plan to perform listening experiments with chaffinches. In gen-
eral, when synthetic vocalizations are directed to an animal, one
crucial aspect is that the acoustic representations should ide-
ally consider the up-to-date scientific knowledge about the au-
ditory perception of the target species (e.g. audible frequency
range, acoustic masking mechanisms, sound level threshold,
equal loudness curves, etc.). This helps to define which are the
relevant characteristics to model from the acoustic signals.

4. Conclusions

We have presented a method for bird song synthesis based
on Hidden Markov Models, discussing on the challenges and
strategies followed at the different stages of the process.

Regarding the acoustic representation, features were com-
puted in a semi-supervised manner, requiring the supervision of
an expert to provide meaningful and robust features. Two rele-
vant aspects for facilitating a general methodology in the future
are to automate the feature extraction process and to provide a
robust analysis. Regarding modelling strategies, an interesting
refinement is to model call sequencing with Markov chains or
first-order HMMs (as proposed in [4]).

One interesting direction to investigate, in the context of
human-animal interaction and sound design, is how to generate
call sequences from human vocal imitation or sketching (e.g.
analogously to [14], build a parallel database of animal vocal-
ization and human imitations, and train models for both), as
well as methods to embed human emotions in the synthetic vo-
calizations.
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