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Abstract
In this paper, we argue the way of modeling speech signals
based on three-way restricted Boltzmann machine (3WRBM)
for separating phonetic-related information and speaker-related
information from an observed signal automatically. The pro-
posed model is an energy-based probabilistic model that in-
cludes three-way potentials of three variables: acoustic features,
latent phonetic features, and speaker-identity features. We train
the model so that it automatically captures the undirected rela-
tionships among the three variables. Once the model is trained,
it can be applied to many tasks in speech signal processing. For
example, given a speech signal, estimating speaker-identity fea-
tures is equivalent to speaker recognition; on the other hand,
estimated latent phonetic features may be helpful for speech
recognition because they contain more phonetic-related infor-
mation than the acoustic features. Since the model is genera-
tive, we can also apply it to voice conversion; i.e., we just esti-
mate acoustic features from the phonetic features that were esti-
mated given the source speakers acoustic features along with the
desired speaker-identity features. In our experiments, we dis-
cuss the effectiveness of the speech modeling through a speaker
recognition, a speech (continuous phone) recognition, and a
voice conversion tasks.
Index Terms: speech modeling, three-way restricted Boltz-
mann machine, speaker-adaptive training, voice conversion,
speech recognition, speaker recognition.

1. Introduction
One of the most typical and widely-used speech modeling meth-
ods is hidden Markov model (HMM). HMM consists of state
transition probabilities and state-wise output probability distri-
bution, and Gaussian mixture model (GMM) is usually used as
the output distribution. In other words, in the most of the speech
signal processing, the observed acoustic features at a certain
frame (state) is modeled as GMM. However, when we model
the observations using GMM, we do not capture the inner struc-
tures (latent features) that exist behind the observations. On the
other hand, modeling based on deep learning that stacks sev-
eral hidden layers has an ability to represent latent features, and
outperformed GMM-based modeling. Nevertheless, such ap-
proaches have too much free parameters and tend to be overfit.
Furthermore, it is inevitable that the gradient-descent-based up-
dates cause local minima and make it difficult to train correctly
without proper constraints.

In this paper, we propose a structural speech modeling
method1 that includes three variables of the fundamental speech

1We do not focus on time series modeling but frame-wise acoustic
modeling in this paper.

factors: acoustic features such as mel-cepstral features, la-
tent phonetic features, and speaker features using three-way re-
stricted Boltzmann machine (3WRBM) [1]. The 3WRBM is a
energy-based probabilistic model that extends the well-known
two-layer RBM [2, 3] so that it represents up to three-order po-
tentials among the three speech factors. It is assumed that there
are undirected connection weights between the different factors,
but no connections between the same factors like an RBM. The
connection weights may represent the strength of the relation-
ships among the speech factors, and are optimized so as to max-
imize the likelihood of the training data. In our approach, we
further add several constraints on the connection weights under
the assumption that an observed acoustic features are from the
neutral acoustic features that are not dependent on any speakers
but on the latent, phonetic features, multiplied with the speaker-
specific adaptation matrix.

Since our proposed model is generative distribution that
takes phonetic-related and speaker-related information sepa-
rately into account, we can apply the model to various tasks
in speech signal processing. For example, we can estimate the
speaker who spoke the sentences just by calculating conditional
probability distribution of the speaker features given the acous-
tic features. We can also estimate the phonetic features from
the conditional probability distribution of the phonetic features,
which may be more effective inputs of HMM for speech recog-
nition than the acoustic features because the phonetic features
include less speaker-related information than the acoustic fea-
tures.

Especially our model shows its effectiveness on voice
conversion (VC) task. Most of the existing VC approaches
[4, 5, 6, 7, 8, 9] require parallel data (speech data of the source
and the target speakers aligned so that each frame of the source
speaker’s data corresponds to that of the target speaker) in the
training stage2, which hinders ease of use; 1) the data is limited
to pre-defined articles (both speakers must utter the same arti-
cles), 2) the trained model is only applied to the speaker pair
used in the training, and 3) mismatch in alinement may cause
some errors in training. Several approaches [13, 14, 15] do not
require any parallel data in the training, and neither does our
VC approach. Therefore, our VC approach improves conve-
nience and practicality since the models can be trained using
existing speech data without limitations. Our VC scheme can
be formulated as MAP estimation, which results in two steps:
1) to estimate phonetic features given the acoustic features and
the speaker features that indicate that the speech data is of the

2Several approaches, such as eigenvoice and MAP [10, 11, 12], that
do not use parallel data between the source and the target speakers has
been proposed, although such methods still require parallel data be-
tween reference speakers to obtain the speaker-independent space.
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source speaker, and 2) to estimate the acoustic features from the
obtained phonetic features and the speaker features that indicate
that the speech data is of the target speaker.

2. Modeling speech using 3WRBM
A well-known energy-based probabilistic model of visible and
hidden variables, restricted Boltzmann machine (RBM), can be
generally extended so as to represent more than two variables
[16]. Especially we call the model of three variables three-way
RBM. In this paper, we define the relationships among three
types of variables (descriptors) of acoustic features (mainly
cepstrum-based features) v = [v1, · · · , vD] ∈ RD , latent fea-
tures h = [h1, · · · , hH ] ∈ {0, 1}H ,

∑
j hj = 1, and speaker

features s = [s1, · · · , sR] ∈ {0, 1}R,
∑
k sk = 1 using a

3WRBM, where D, H , and R indicate the numbers of the
acoustic features, the latent features, and the speakers. In our
approach, we only target on modeling clean speech by vari-
ous speakers; therefore, the latent features h may represent
phonetic-related information3 that are not observable but exist
behind the speech, since the variation caused by speakers is cap-
tured by the speaker features s. h and s are defined as one-hot
vectors, and have values of 1 if only the element of interest is ac-
tivated. For example, the statements hj = 1, ∀hj′ = 0 (j′ 6= j)
and sk = 1, ∀sk′ = 0 (k′ 6= k) indicate that the jth phonetic
feature acts on the speech at that time, and that the kth speaker
uttered, respectively. The joint probability of the three descrip-
tors is defined as follows:

p(v,h, s) =
1

N
e−E(v,h,s), (1)

where N denotes the normalization term. The energy function
E(v,h, s) is defined as:

E(v,h, s) = U(v,h, s) + P (v,h, s) + T (v,h, s) (2)

U(v,h, s) =
1

2
v>v̄ − b>v̄ − c>h− d>s (3)

P (v,h, s) = −v̄>Wh− h>Vs− s>Uv̄ (4)

T (v,h, s) = −
∑
i,j,k

v̄ihjskZijk, (5)

where we denote v̄ as the normalized acoustic features (v̄ =
[v̄i] = [ vi

σ2
i

]). U(v,h, s), P (v,h, s), and T (v,h, s) describe
the unary potentials, the pairwise potentials, and the three-way
potentials of the three descriptors, respectively, where b ∈ RD ,
c ∈ RH , d ∈ RR, and σ = [σi] ∈ RD are bias terms of the
acoustic features, of the phonetic features, of the speaker fea-
tures, and variance terms of the acoustic features, W ∈ RD×H ,
V ∈ RH×R, and U ∈ RR×D are pairwise weights of v and
h, h and s, and s and v, and Z ∈ RD×H×K is the three-way
weights, whose elementZijk is of vi, hj , and sk. The model de-
fined in Eq. (1) closely resembles a factored 3WRBM found in
[1]. The significant difference is that a factored 3WRBM deals
with one visible descriptor with a hidden descriptor and mod-
els the third-order relationships among two visible units and a
hidden unit, while our model deals with two visible descriptors
and a hidden descriptor to capture the relationships among three
units of the first visible, the second visible and the hidden de-
scriptors. Note that there are no connections between units be-
longing to the same descriptors in our model unlike a factored
3WRBM.

3So, we may call h as phonetic features.

2.1. Constraints on phonetic- and speaker-related factors

The model defined in the previous section has a large number
of parameters and no constraints no parameters, which causes
overfitting and difficulties in training. Therefore, it would be
better to add some constraints to the model. In this paper, we
redefine the 3WRBM with structured parameters, motivated by
the well-known speech modeling with affine-transformation.

When we look at the parameters of three-way potentials
Z:jk which denotes the partial vector of Z along the first mode,
we may notice that the energy related to these parameters when
a phoneme j and a speaker k are activated is calculated as neg-
ative inner product of v̄ and Z:jk, which is T (v, hj = 1, sk =
1) = −v̄>Z:jk. The negative inner product takes a small value
when the normalized acoustic features are close to the parame-
ter vector Z:jk. In other words, under the stable (low-energy)
condition, Z:jk represents the acoustic pattern that often ap-
pears in the training data and that depends on the jth phoneme
and the kth speaker. Considering decomposing the pattern Z:jk

into phoneme-related and speaker-related factors, we define

Z:jk = Akmj , (6)

where mj ∈ RD and Ak ∈ RD×D denote the factors related
to the phoneme j and to the speaker k, respectively. Eq. (6)
indicates that Z:jk is obtained by projecting the feature vector
mj of the phoneme j into the speaker k’s space with his/her
own matrix Ak. Since it is generally known that the speaker-
induced modification is formulated as affine-transformation in
the cepstrum-based domain [17, 18], the formulation in Eq. (6)
is considered to be reasonable. Therefore,mj and Ak indicate
the acoustic pattern of the phoneme j that does not depend on
any speakers (neutral acoustic pattern) and the adaptation ma-
trix of the speaker k that projects neutral acoustic patterns into
the speaker-specific space, respectively. The mj can represent
the relationships between the phoneme j and the acoustic fea-
tures; hence, we set W = 0.

In addition, the bias dk of the speaker k may represent
something such as frequency of the speaker k appearing in the
training data. In this study, we do not use such biases on speak-
ers, i.e., d = 0, in order to treat speakers impartially.

Summarizing the above discussion, we redefine the energy
function for modeling speech as follows:

E(v,h, s) (7)

=
1

2
v>v̄ − b>v̄ − c>h− h>Vs− s>Uv̄ − v̄>AsMh,

where we use As =
∑
kAksk and M = [m1 · · · mH ].

Like an RBM, because there are no connections between acous-
tic features, between phonetic features, or between speaker fea-
tures, each conditional probabilities form simple equations as

p(v|h, s) = N (v | b+ U>s+ AsMh,σ2) (8)

p(h|s,v) = B(h | f(c+ Vs+ M>A>s v̄)) (9)

p(s|v,h) = B(s | f(Uv̄ + V>h+ [v̄>Ak]Mh)), (10)

where N (·|µ,σ2), B(·|π), and f(·) indicate an element-wise
Gaussian probability density function with the means µ and
variances σ2 = [σ2

i ], a multivariate Bernoulli distribution with
the success probabilities π, and an element-wise softmax func-
tion, respectively. LettingA ∈ RD×D×R be a third order tensor
whose elements are Ak in the third mode, the proposed model
defined in Eq. (7) is graphically represented as shown in Fig. 1.
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Figure 1: Graphical representation of the proposed speech fac-
tor modeling.

2.2. Parameter estimation

Given a collection of training speech data X = {vt, st}Tt=1

that has T frames composed of R speakers, the parameters of
the proposed model Θ = {M,A,U,V, b, c,σ} are simulta-
neously estimated so as to maximize the log-likelihood as

L = log p(X) =
∑
t

log
∑
h

p(vt,ht, st). (11)

In this paper, the parameters are iteratively updated using
stochastic gradient descent in the similar way to the training of
an RBM. We can derive partial gradients of each parameter in
the similar forms of an RBM, although we omit the equations
here due to space limitation. The expectations will appear in
the derivatives; however; we can still use contrastive divergence
(CD) [2] and efficiently approximate them with the expectations
of the reconstructed data just like the training of an RBM.

3. Application to speech tasks
3.1. Speech/speaker recognition

After the training of a 3WRBM, we can calculate the follow-
ing conditional probabilities that the kth speaker and the jth
phoneme are activated given the acoustic features for test:

p(sk = 1|v) = f(−g(
c

R
) + Uk:v̄ + g(

c

R
+ V:k + M>A>k v̄))

(12)

p(hj = 1|v) = f(cj + g(V>j: + Uv̄ + [v̄>Ak]mj)), (13)

where g(x) = log
∑
k e

xk indicates a generalized softplus
function, and Uk:, V:k, and Vj: are the kth row vector of
U, the kth column vector of V, and the jth row vector of V,
respectively. For speaker recognition, we can use the expec-
tations of the speaker features E[s|v] = [p(sk = 1|v)] as
an input of a speaker recognizer (tandem approach), or just
estimate the speaker as k̂ = argmax

k
p(sk = 1|v) (direct

approach). For speech (phoneme) recognition, we can use
E(h|v) = [p(hj = 1|v)] as an input vector of a speech recog-
nizer such as HMM. Since the phonetic features h do not indi-
cate the real (supervised) phonemes but latent features obtained
in the unsupervised training, we just take the tandem approach
for speech recognition.

3.2. Voice conversion

Given the acoustic features v(i) of the source speaker’s speech
that we want to convert to that of the target speaker v(o) with
the identity vector s(i) an s(o) where only ith and oth elements
take the value of 1 (otherwise 0), respectively, we estimate v(o)

Table 1: Speaker recognition accuracies of each method.

Method GMM UBM 3WRBM 3WRBM (ideal)
Acc. [%] 85.9 83.2 78.1 90.6

Table 2: SVM-based speaker recognition of the proposed
method with various features.

Features v (mcep) h s
# dims. 32 20 8
Acc. [%] 82.0 42.2 78.7

using MAP (maximum a posteriori) as follows:

v̂(o) , argmax
v(o)

p(v(o)|v(i), s(i), s(o))

= argmax
v(o)

∑
h

p(h|v(i), s(i), s(o))p(v(o)|h,v(i), s(ij), s(o))

' argmax
v(o)

p(ĥ|v(i), s(i))p(v(o)|ĥ, s(o))

= b+ U>o: + AoMĥ, (14)

where we define ĥ , E[h|v(i), s(i)], which is regarded as the
most likely phonetic features calculated from the input acoustic
features v(i) and the speaker features s(i). We can rewrite ĥ as
follows:

ĥ , E[h|v(i), s(i)] = f(c+ Vs(i) + M>A>s(i) v̄
(i)). (15)

In short, the proposed VC scheme has two steps: 1) calcu-
late Eq. (15) to obtain the phonetic features included in the
input acoustic vector, and 2) calculate Eq. (14) to obtain de-
sired acoustic features using the phonetic features and the target
speaker’s parameters.

4. Experimental evaluation
4.1. System configuration

In order to evaluate our speech modeling method, we conducted
speech recognition, speaker recognition, and voice conversion
experiments. Through all the experiments, we used ASJ Contin-
uous Speech Corpus for Research (ASJ-JIPDEC4). In the train-
ing stage, we randomly selected and used speech data of 5 sen-
tences (approx. 160k frames) uttered by R = 8 speakers (4
males and 4 females) from the set A in the corpus. For the eval-
uation, we used the speech data spoken by the same 10 speak-
ers of the different 10 sentences from the training data. As an
acoustic feature vector, we used 32-dimensional mel-cepstral
features that were calculated from 513-dimensional WORLD
[19] spectra without dynamic features. In the training of the
system, we used 20 hidden units (phonetic features), a learning
rate of 0.01, a momentum of 0.9, and a batch-size of 800, and
set the number of iterations as 200.

4.2. Speech/speaker recognition task

Firstly, we examined the effectiveness of our model in speaker
recognition. In this experiment, we compared our method in
direct approach with the conventional GMM-based method and
universal background model (UBM), by calculating the frame-
wise recognition accuracy 100 · Ncorr./Nall where Ncorr. and

4http://research.nii.ac.jp/src/ASJ-JIPDEC.html
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Table 3: Continuous phone recognition (correct rate [%]) with
changing the number of phonemes to be recognized.

Phones 5 vowels +5 cons. +10 cons.
v (mcep) 53.53 43.18 36.52
h 59.34 41.61 33.03

Nall indicate the numbers of the corrected frames and the total
frames of the test speech data, respectively. In the GMM-based
method, we trained GMMs of 64 mixtures for each speaker,
and estimated the speakers by calculating the likelihood of each
GMM and choosing the most likely GMM. In the UBM ap-
proach, we first trained a single GMM (UBM) of 64 mixtures
using the whole speech data by all the speakers, copied the pa-
rameters of the UBM to those of speaker-dependent GMMs, and
then trained each GMM using speaker-wise training data.

The speaker recognition results are shown in Table 1. When
we compare our method of direct approach with the conven-
tional methods, the GMM performed best of the three, although
the GMM and the UBM approaches are discriminative whereas
our approach is generative and they should not be compared
directly. It should be also noted that if we first calculated the
expected phonetic features given the acoustic features and the
correct speaker features in Eq. (15) then estimated the speak-
ers using the conditional probability in Eq. (10) rather than in
Eq. (12), we got much better accuracy up to 90.6 with our model
(3WRBM (ideal)). Therefore, we can say that our model has a
potential of being a comparable speaker recognizer to GMM
even though our method is a generative approach.

Secondly, we evaluated the performance of speaker recog-
nition in our model using a support vector machine (SVM) with
a linear kernel. In this experiment, we compared the feature
type of input to the SVM recognizer as the original acoustic fea-
tures (mel-cepstral features), the conditional expectation values
of phonetic features calculated in Eq. (13), and the conditional
expectation values of speaker features calculated in Eq. (12),
respectively, as shown in Table 2. Interestingly, the speaker fea-
tures s produced much better accuracy than the phonemic fea-
tures h, which is close to that of the acoustic features, despite
of the compact size of 8 dimensions.

Thirdly, we conducted a speech (continuous phoneme)
recognition test. We trained triphone HMMs that have five
states with three distributions as a speech recognizer. Each dis-
tribution was represented with 32-mixture Gaussians. For an
input of the HMM recognizer, we used the phonetic features (E
q. (13)), and the traditional acoustic features of mel-cepstra for
comparison. We evaluated three cases: the 5 vowels (/a/, /e/, /i/,
/o/, and /u/), the 5 vowels and the 5 consonants, the 5 vowels
and the 10 consonants. Table 3 shows the speech recognition
results. As shown in Table 3, we obtained better performance
from the phonetic features than the acoustic features in case of
5 vowels. This is due to the fact that the phonetic features ex-
clude the speaker-related information and consequently include
the remaining phonetic-related information, which were more
helpful for speech recognition than the acoustic features. In
the cases that consonants were considered, the acoustic features
outperformed the phonetic features because our model does not
include dynamic features. In general, consonant sounds, such as
/s/ and /k/, should be represented as dynamics or multiple frame
features; nevertheless, in our model, each unit j of the phonetic
features is related with the corresponding acoustic pattern mj ,
which represents static features.

Table 4: Comparison of non-parallel VC methods.

Method ARBM SATBM 3WRBM
MDIR [dB] 2.11 2.66 3.35

4.3. Voice conversion task

In the VC experiment, we randomly picked up a male speaker
(identified with “ECL0001” in the dataset) and a female speaker
(“ECL1003”) from the training set as a source and a target
speakers, respectively. Just for the evaluation, we converted the
test speech in parallel data (of 10 sentences) of the source and
the target speakers, which was created using dynamic program-
ming. As an objective criteria, we used mel-cepstral distortion
improvement ratio (MDIR) that is defined as follows:

MDIR[dB] =
10
√

2

ln 10
(
∥∥∥v(o) − v(i)

∥∥∥2 − ∥∥∥v(o) − v̂(o)
∥∥∥2)

where v(i), v(o), and v̂(o) are mel-cepstral features at a frame of
the source speaker’s speech, target speaker’s speech, and con-
verted speech, respectively. The MDIR measures how the in-
put speech was improved toward the target speech in the mel-
cepstal domain; the higher the value of MDIR is, the better the
performance of the VC is.

The results are shown in Table 4, which compares the pro-
posed model with the conventional non-parallel VC methods5,
the ARBM [14] and the SATBM [15]. As shown in Table 4, our
method outperformed the other conventional methods by a large
margin. We can say that our model performed better because of
the explicit modeling of acoustic, phonetic, and speaker fea-
tures with considering up to three-way connections between the
speech factors. Just for a reference, we also compared with a
popular GMM-based VC with 64 mixtures using parallel data
of 5 sentences, which got 3.86 MDIR. However, such approach
takes a benefit from using parallel data and should not be di-
rectly compared with non-parallel approaches just in terms of
VC quality.

5. Conclusion
In this paper, we presented a generative speech modeling
method based on a three-way restricted Boltzmann machine. In
our approach, we explicitly model the strength of the connec-
tions among fundamental speech factors: acoustic, phonetic,
and speaker features, which enables us to apply the model
to many speech signal processing tasks. In order to evaluate
our speech modeling method, we conducted speech recogni-
tion, speaker recognition, and voice conversion experiments. In
the speaker recognition, we showed the potential of our gen-
erative approach which was comparable to discriminative ap-
proach based on GMM. In the speech recognition, the latent
phonetic features obtained from our model outperformed the
traditional mel-cepstral features in case of vowels were evalu-
ated. In the voice conversion experiment, we obtained better
performance with our model than the conventional non-parallel
VC approaches.

In this paper, we focused on the formulation of our model
and the basic evaluation. In the future, we will further investi-
gate our method more deeply. For example, we want to evaluate
our model when changing the number of training sentences and
the number of the reference speakers.

5For the fair comparison, we used the same configuration (the num-
ber of hidden units, the type of adaptation matrices, the number of ref-
erence speakers, etc.) to the conventional approaches.
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