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Abstract 

The task of native language (L1) identification from non-

native language (L2) can be thought of as the task of 
identifying the common traits that each group of L1 speakers 
maintains while speaking L2 irrespective of the dialect or 
region. Under the assumption that speakers are L1 proficient, 
non-native cues in terms of segmental and prosodic aspects are 
investigated in our work. In this paper, we propose the use of 
longer duration cepstral features, namely, Mel frequency 
cepstral coefficients (MFCC) and auditory filterbank features 
learnt from the database using Convolutional Restricted 

Boltzmann Machine (ConvRBM) along with their delta and 
shifted delta features. MFCC and ConvRBM gave accuracy of 
38.2% and 36.8%, respectively, on the development set 
provided for the ComParE 2016 Nativeness Task using 
Gaussian Mixture Model (GMM) classifier. To add comple-
mentary information about the prosodic and excitation source 
features, phrase information and its dynamics extracted from 
the log(F0) contour of the speech was explored.  The accuracy 

obtained using score-level fusion between system features 
(MFCC and ConvRBM) and phrase features were 39.6% and 
38.3%, respectively, indicating that phrase information and 
MFCC capture complementary information than ConvRBM 
alone. Furthermore, score-level fusion of MFCC, ConvRBM 
and phrase improves the accuracy to 40.2%. 
Index Terms: Shifted delta cepstrum, Convolutional 
Restricted Boltzmann Machine, F0, Accent, Phrase. 

1. Introduction 

In general, multilingual speakers lack thorough acquisition of 
second language (L2) and speech from a particular group of 
non-native speakers show common traits such as distinct 
„foreign accent‟ and typical pronunciation errors [1], [2]. The 

task of native language (L1) identification aims at identifying 
such commonalities from spontaneous speech that can be used 
to identify the mother tongue of English (L2) speakers. The 
feasibility of proposed Native Language Identification (NLID) 
task in this challenge lies in phenomenon of prosodic transfer 
from L1 to L2. Moreover, the dialectal differences of learner's 
L1 in aspects of prosodic transfer from L1 to L2 should be 
known as observed by Fujisaki and others [3], [4]. NLID 
system can be used in parallel with computer-aided language 

learning systems to provide L1- specific training program, also 
for automated speech assessment systems, reading tutors, 
adaptation in ASR, speaker forensics etc. [5], [6]. 

Non-native speakers frequently maintain a foreign accent 
and inadvertently carry phonemic details from L1 to L2 [7]. In 
addition, non-native speech typically includes more 
disfluencies than native speech and is characterized by a lower 
speech rate [2], [8]. This indicates the influence of L1 over L2,  

 
both in terms of prosody as well as segmental aspects [1]. 
However, the degree of influence, depends on the amount of 
L1 used and the proficiency of L2 [2], [9]. The above 
difficulties are very prominent in Native Language Speech 
Corpus (NLSC), since the recordings are from the TOEFL 
iBT® assessment given by non-native speakers under 

examination conditions [10]. Thus, nativeness of speaker can 
be identified by studying the acoustic and prosodic aspects that 
remain native-like or become prominent while speaking L2. 

In this paper, we intend to explore both acoustic and 
prosodic features for L1 identification. We propose to use 
acoustic features obtained from the auditory filterbank learnt 
from the speech signals using Convolutional Restricted 
Boltzmann Machine (ConvRBM). In majority of the 

experiments related to evaluation of degree of nativeness of 
the speaker and L2 (particularly English) acquisition, native 
English speaking listeners are used for human scoring [9], 
[11]. This is because, it is assumed that non-native cues can be 
easily identified by the native English speaking listeners that 
are having well-established linguistic knowledge of speech. 
This idea to imitate the hearing mechanism of native English 
speakers motivates us to learn features not only from NLSC 

but also from other databases, which contains speech 
recordings from native English speakers. In this work, we have 
used WSJ0 database having recording from clean environment 
and AURORA 4 multi condition database [12], [13].  

The time interval or frame size for feature extraction is 
known to capture different segmental information as per the 
window chosen for analysis. For longer analysis window, the 
cepstral features contain information about formants structure 
and its dynamics that can reflect the movement and position of 

vocal and nasal articulators [14]. Moreover, a time interval of 
90 ms is suggested by Furui [15] to preserve the transitional 
information associated with changes from one phoneme to 
another. Moreover, Soong and Rosenberg [16] proposed 100 
to 160 ms time interval, to obtain good estimates of the trend 
of spectral transitions between the syllables. Thus, in order to 
extract segmental information, the proposed features for L1 
identification task are extracted over longer window durations. 

Furthermore, the dynamic features (i.e., delta (∆), delta-delta 
(∆∆)) and Shifted Delta Cepstral (SDC) features were 
explored to capture the spectral dynamics. To gain the 
advantage of prosodic cues for L1 identification task, prosodic 
features such as fundamental frequency (F0), phrase and 
accent along with their dynamics are considered. The results 
indicate that features from WSJ0 and AURORA 4 can better 
identify L1 than features from NLSC. Moreover, phrase with 

its dynamics was found to capture complementary information 
with respect to spectral features and was used to further 
improve the accuracy of the classification system. 
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Figure 1: Subband filters in frequency-domain trained on (a) NLSC, (b) WSJ0 and (c) AURORA 4.

2. Acoustic Features 

The NLID task requires features that capture idiosyncrasies of 
a particular L1 that remain while speaking L2. Thus, for this 
task, both spectral and excitation source features are explored. 

2.1. Convolutional Restricted Boltzmann Machine 

ConvRBM is an unsupervised probabilistic model used to 
learn auditory filterbanks directly from speech signals. The 

inference is based on sampling of hidden units from noisy 
rectified linear units (NReLU) [16]. Training is based on 
contrastive divergence and parameters are updated using 
gradient descent. The training of the model and feature 
extraction is similar to our very recent work reported in [16]. 
The model is trained using three databases, namely, NLSC, 
WSJ0 and AURORA 4. The subband filters learnt on these 
three databases are shown in Figure 1. To analyze the subband 

filters, they were arranged according to their center frequency. 
As shown in Figure 1, we can see that many subband filters 
trained on NLSC are different than the subband filters trained 
on native English speakers‟ databases (WSJ0 and AURORA 
4). As seen from Figure 1(a) many of the filters are not 
localized specifically in mid-center frequency range compared 
to subband filters in Figure 1(b) and Figure 1(c). This indicates 
that speaker-specific traits are learnt by NLSC, which may be 

due to interference of L1 over L2 [18].  

2.2. Shifted Delta Cepstral (SDC) Features 

SDC are long-term temporal features that capture the spectral 
dynamics of speech via cepstral trajectory in N-dimensional 
(dim) feature space. SDC are known to improve the 
performance of speaker recognition and language recognition 
systems [14], [19], [20]. SDC has pseudo-prosodic behavior, 
since in each frame; it captures the temporal dynamics of the 
articulators present in the next frames [14]. For a given N-dim 
cepstral feature vector, SDC vector at nth frame is obtained by 

concatenating k blocks of delta coefficients and is given by  

 2( ) ( )
D D

d D d D

c n iP dc n iP d d
 

         ,            (1) 

where D is time advance and delay for delta computation, P is 
time shift between consecutive blocks, i=0 to k-1 blocks to be 
concatenated [14]. 

2.3. Excitation Source-Based Parameters 

The F0 contour of speech is known to capture both linguistic 

and non-linguistic information (speech prosody). This 
information is embedded in the low frequency variations 
(LFV) and high frequency variations (HFV) of the F0 contour 
[21]. The state-of-the-art Fujisaki model decomposes F0 in 
log- domain into phrase and accent components extracted from 

LFV and HFV, respectively [21], [22]. In this work, instead of 
extracting components from their respective commands, we 
use the LFV and HFV directly along with their dynamics for 
NLID task. We have used the Zero Frequency Filtering (ZFF) 
method to estimate the F0 contour [23]. The negative-to-
positive zero-crossings of the zero frequency filtered signal 
gives an estimate of the Glottal Closure Instant (GCIs) 
Thereafter, the F0 contour is obtained from the GCI locations. 

In order to estimate HFV and LFV, log (F0)  is processed, i.e., 
the intermediate values of log (F0) for unvoiced speech 
regions and short pauses are interpolated and microprosodic 
variations due to individual speech sounds (such as plosive, 
fricatives, etc.) are smoothed out. The interpolated and spline 
fitted log (F0) contour is then passed through a highpass filter 
with a stop frequency at 0.5 Hz to obtain HFV. The HFV is 
then subtracted from the processed log (F0) contour yielding 

LFV. LFV consists of phrase component and Fb (speaker-
specific constant) [21], [24]. Fb is set to the overall minimum 
of the LFV and is subtracted from it to give phrase component. 

3. Experimental Results 

3.1. Speech Corpus 

NLSC is a corpus of non-native English speech consisting of 
spoken response provided during a high-stakes global 

assessment of English language proficiency, the Test of 
English as a Foreign Language (TOEFL iBT®). It contains 
5,132 spoken responses. For the ComParE 2016 Nativeness 
Task, the NLSC corpus is partitioned as follows: 3,300 
responses (64 %, approximately 41.3 hours) will be used as 
training data, 965 responses (19 %, approximately 12.1 hours) 
will be used as development data, and 867 responses (17 %, 
approximately 10.8 hours) will be used as the test data. The 
complete details of the corpus are mentioned in [10]. 

3.2. System Building 

In this paper, we use Gaussian Mixture Model (GMM) with 
128 mixtures for performing the classification of input speech 
into given L1 classes. At the training stage, 11 GMM models 
each corresponding to separate L1 class were built. The 
models were trained using 300 instances of each L1 class 
available from the training set. Final scores are represented in 
terms of log-likelihood (LLK). The decision for the predicted 
class for the test speech is taken by calculating LLK for each 
GMM class. The class associated with the GMM that has 

maximum LLK is the predicted class. 

3.3. Performance Measure 

In this paper, Unweighted Average Recall (UAR) and 
weighted average recall (WA) ('conventional accuracy') is 
used as the evaluation measure [10]. UAR is given by [25]: 
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where 𝐶𝑖𝑗  is the number of instances of class i in contingency 

matrix C that are classified as class j with N as the total 
number of the classes. To utilize complementary information, 

score-level fusion of features is obtained using (3).  

𝐿𝐿𝐾𝑓𝑢𝑠𝑒𝑑 =  𝛼𝑖
𝑁
𝑖=1 𝐿𝐿𝐾𝑓𝑒𝑎𝑡𝑖 ,                (3) 

where 𝐿𝐿𝐾𝑓𝑒𝑎𝑡𝑖  is the LLK score of ith feature, αi decides the 

weight of the scores such that  𝛼𝑖
𝑁
𝑖=1 = 1. Before score-level 

fusion, the scores were normalized using tanh-estimators [26]. 
This technique was chosen for normalization since it is robust 
and is not sensitive to the outliers [26]. The normalization is 
given by: 

𝐿𝐿𝐾′𝑘 =
1

2
 tanh 0.01 

𝐿𝐿𝐾𝑘 − 𝜇

𝜎
  + 1     ,              (4) 

where 𝐿𝐿𝐾𝑘and  𝐿𝐿𝐾′𝑘 are the original and normalized score 

of the kth class, 𝜇 and 𝜎 are the global mean and standard 

deviation of the scores, respectively. 

3.4. Effect of Window Length of Spectral Features 

In this work, we consider 13-dim NLSC, WSJ and AURORA 
features. In addition, we also used 13-dim MFCC as spectral 
features. To capture the short-time dynamic (DYN) 
information, these static spectral features are concatenated 
with Δ and ΔΔ to form 39-dim MFCC+DYN, NLSC+DYN, 
WSJ+DYN and AURORA+DYN. Furthermore, to capture 
long-term temporal spectral dynamics, the 13 dim spectral 
features were also combined with SDC resulting in 39-dim, 

MFCC+SDC, NLSC+SDC, WSJ+SDC and AURORA+SDC 
features. The parameters for SDC are set to N=13, D=2, P=2, 
k=2 in (1). The 13-dim spectral features are extracted over 
various window durations (25 ms, 100 ms, 150 ms and 200 
ms). This is to quantify the fact that in spectral features, long 
duration window is useful in capturing the prosodic trends. 
Therefore, the window that is suitable for NLID task is 
investigated. As shown in Figure 2, WA on the development 

set increases with increase in window length. Moreover, 150 
ms and 100 ms are ideal window lengths for both DYN and 
SDC features. 

 

Figure 2: Plot of window length (ms) vs. WA (in %). 

3.5. Effect of Dynamics of Source Features 

In order to capture the temporal dynamic information 
contained in log(F0), Phrase and HFV (denoted as Accent) 
features, their, Δ, ΔΔ and ΔΔΔ (3Δ) components were 
extracted. Figure 3 shows the effect of dynamics of source-
based features on the classification accuracy. It can be 
observed from Figure 3 that dynamic features of log(F0) and 

phrase contain significant information about L1 of the 
speakers. However, the dynamic information undermines the 
performance of accent features. 

 

Figure 3: Plot of dynamic features vs. classification 
accuracy for source features. 

3.6. Results on the Development Set 

The best results from Figure 2 are summarized in Table 1 and 
it is observed that among data-driven approaches, WSJ and 
AURORA perform equally well with accuracy of 36.9 % and 

36.8 %, respectively, compared to the NLSC features. The 
possible reason of underperformance of NLSC could be that 
the speaker-specific traits learnt by the model were not 
specific to an individual group of non-native speakers, instead 
generalized statistical (invariant) properties corresponding to 
entire database was learnt. Hence, the models learnt on NLSC 
might not be optimal for individual non-native speaker group. 
However, the model trained on native English speakers‟ 

database represents an optimal auditory code [17], [27] that 
captured the common traits of non-native speakers. From 
Table 1, we also observe that the accuracy of handcrafted 
MFCC+SDC features is highest, i.e., it performs better than 
our proposed data-driven features (WSJ and AURORA) 
specifically with SDC. The possible reason could be that the 
model trained on WSJ0 and AURORA 4 does not incorporate 
any information from NLSC database. However, there is not 

huge difference in the performance of WSJ and AURORA, 
which could be improved in future by adapting models trained 
on WSJ0 and AURORA 4 to specific non-native speaker 
groups in NLSC database [28]. Among the source-based 
features, Table 1 shows that, log(F0) has highest accuracy than 
phrase and accent features when used independently for 
classification. However, accuracy of log(F0) feature 
significantly improves when accent component is fused with it 

at feature-level. Overall, it can be observed from Table 1 that 
the prosodic features based on Fujisaki model alone are not 
performing well for the proposed NLID task. Authors believe 
that this is primarily due to lack of dialectal knowledge about 
L1 speaker and its prominent effect on L2 [3], [4]. 

Table 1: WA and UAR of spectral and source features 

Spectral
* 

Features 

WA 

(%) 

UAR 

(%) 

Source 

Features 

WA. 

(%) 

UAR 

(%) 

MFCC+DYN_150 37.4 37.7 logF0 14.0 14.1 

MFCC+SDC_100 38.2 38.4 Phrase 11.9 11.9 

NLSC+DYN_150 35.6 35.8 Accent 13.9 13.9 

NLSC+SDC_150 35.1 35.2 logF0+Phrase 14.1 14.1 

WSJ+DYN_150 36.9 37.1 logF0+Accent 14.9 15.1 

WSJ+SDC_100 36.5 36.6 Phrase+Accent 13.1 13.0 

AURORA+DYN_100 36.8 37.1 logF0+Phrase+Accent 14.8 14.8 

AURORA+SDC_100 36.1 36.3    

* MFCC+DYN_150: Feature_Window Length (ms). 
 

The best performing data-driven features (WSJ+DYN_150 

and AURORA+DYN_100) are fused with the spectral MFCC 
and source-based features. Among all the source-based 
features, i.e., log(F0), phrase and accent (with all its 
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combination and dynamic features), phrase+3Δ showed the 
improvement in accuracy of spectral features after score-level 
fusion. The selected features for which the better performance 
is obtained after fusion are shown in Table 2. 

Table 2: WA and UAR (in %) after score-level fusion 

Spectral 

Features 

Fused 

Feature 
𝛼2  

WA (%) 

after 

fusion 

UAR (%) 

after 

fusion 

AURORA+DYN_100 MFCC+SDC_100 0.6 39.6 39.8 

WSJ+DYN_150 MFCC+SDC_100 0.6 38.9 39 

AURORA+DYN_100 Phrase+ 3 Δ 0.2 38.3 38.5 

WSJ+DYN_150 Phrase+ 3 Δ 0.1 37.7 37.9 
 

From Table 2, it can be observed that after fusion WA of both 
AURORA and WSJ features significantly improved. However, 
the improvement was more significant for AURORA even 
though they performed equally well without fusion. The 
possible reason is that AURORA 4 contains utterances from 
clean, noisy and mismatched conditions similar to NLSC 
database in which mismatched conditions was observed for 

few utterances. Thus, the model learnt using AURORA 4 is 
more generalized compared to the clean WSJ database. Thus, 
both at spectral-level and source-level, AURORA+DYN_100 
is the common feature which give best fusion accuracy with 
MFCC+SDC_100 and phrase+3Δ. To further analyze the 
reason on improvement after fusion with MFCC+SDC_100 
and phrase+3Δ features, the individual performance of the 
languages is considered (as shown in Table 3). 

Table 3: Effect of fusion on accuracy of individual L1 

 
MFCC+ 

SDC_100 

AURORA

+ 

DYN_100 

AURORA 

+Phrase 

+3 Δ 

AURORA+DY

N_100+MFCC+ 

SDC_100 

AURORA+DYN_100

+ MFCC+SDC_100+ 

Phrase3 Δ 

ARA 38 36 31 41 37 

CHI 54 55 51 55 54 

FRE 30 28 45 28 38 
GER 52 48 46 55 56 

HIN 33 34 37 42 36 

ITA 44 37 31 43 39 

JPN 34 38 36 35 35 

KOR 41 44 38 42 43 

SPA 30 19 35 29 34 

TEL 42 40 36 40 42 

TUR 25 29 37 28 29 
 

It was observed from Table 3 that after fusion with MFCC, the 
accuracy of all languages showed improvement (except JPN, 
KOR and TUR). On the contrary, phrase+3Δ showed 
significant improvement for FRE, SPA and TUR languages. 
This indicates that phrase+3Δ carry significant information 
about nativeness of the FRE, SPA and TUR speakers. In order 
to exploit the advantage of these observations, all the three 
features (AURORA+DYN_100, MFCC+SDC_100 and 

Phrase+3Δ) were further fused using (3). The weighted 
combination of 𝛼1=0.5, 𝛼2=0.4 and 𝛼3=0.1 gave relatively 

best WA 40.2 % and UAR 40.4 % for the challenge. 

3.7. Result on Test set 

The results of the test are shown for 2 out of the 5 trials that 
can be submitted for the challenge. The first trial include 
scores submitted for the feature MFCC+SDC_100 and for the 
second trial, scores from the fusion of AURORA, MFCC and 
phrase-based features (that performed best on development 
set) were submitted. The Confusion Matrix (CM) for first and 
second trial is shown in Table 4 (a)-4(b), respectively, sorted 
in geographical order from west to east. We obtain WA as 

31.0 % and 34.1 %, UAR as 31.4 % and 34.3 % for first and 

second trial, respectively. The last row of CM indicates the 
accuracy on individual L1. The grey portions indicate higher 
confusion between languages. Table 4(a) shows that for 
MFCC+SDC_100, majority of languages were confused with 
ARA and CHI irrespective of geographical locations. 

However, the confusion for ARA is reduced in second trial; 
this is reflected with higher accuracy for all languages in 
second trial (except ARA and ITA). This may be due to the 
complementary information added due to AURORA+ 
DYN_100 and phrase+3Δ. 
 

Table 4 (a): The CM of test set for the first trial submission. 
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  GER FRE ITA SPA ARA TUR HIN TEL JPN KOR CHI 

GER 21 2 4 4 2 4 4 1 1 3 3 

FRE 4 12 3 2 1 2 1 1 0 0 0 

ITA 11 9 23 4 6 2 1 3 6 3 3 

SPA 6 9 6 23 4 5 4 8 2 5 5 

ARA 8 17 4 11 32 24 10 15 8 8 10 

TUR 2 2 0 1 0 9 0 0 1 3 1 

HIN 0 2 1 4 2 1 15 11 1 1 4 

TEL 3 5 5 5 7 13 28 39 1 2 2 

JPN 0 2 2 4 8 3 2 2 36 14 6 

KOR 1 5 3 4 4 5 5 1 5 23 4 

CHI 19 13 17 15 14 22 12 7 14 18 36 

Acc(%) 28 15.4 33.8 29.8 40 10 18.3 31.8 48 28.8 48.6 
 

Table 4 (b): The CM of test set for the second trial submission. 
 

H
y

p
o

th
es

is
 

  GER FRE ITA SPA ARA TUR HIN TEL JPN KOR CHI 

GER 26 8 3 5 2 5 4 1 1 2 4 

FRE 6 20 6 5 1 4 3 0 1 2 1 

ITA 8 8 20 6 6 4 1 1 4 4 3 

SPA 6 9 10 23 9 12 4 6 5 5 6 

ARA 6 10 6 10 29 18 12 11 8 7 8 

TUR 3 1 0 2 2 14 0 1 0 4 1 

HIN 0 0 0 2 4 1 17 11 0 1 4 

TEL 1 5 3 2 4 9 22 43 0 0 3 

JPN 0 1 2 3 10 3 2 2 42 12 4 

KOR 1 5 2 5 3 4 6 6 4 26 4 

CHI 18 11 16 14 11 16 11 6 10 17 36 

Acc(%) 34.6 25.6 29.4 29.9 36.3 15.5 20.7 48.9 56 32.5 48.6 

 
It was observed on the development set that, fusion of 
AURORA, MFCC and phrase-based features performed better 
for GER and FRE than MFCC only. This is reflected in test set 
as the confusion of GER and FRE to other languages reduced. 

Moreover, for both first and second trial majority of the 
languages are confused with CHI, which was not the case for 
development set. Thus, the fusion factor obtained over the 
development set did not generalize for the test set. In future, 
the effect on accuracy by taking the increased weightage of 
prosodic features for fusion will be explored. 

4. Summary and Conclusions 

Native speakers have linguistic knowledge of L1 that help in 
identifying non-native cues of L2 speakers. With respect to 
this idea, we attempt to learn features from native English 
speakers‟ database, i.e., WSJ0 and AURORA 4. Moreover, we 
also explored segmental information in the form dynamic and 
shifted delta features. The prosodic information from phrase 

and its dynamic features was found useful for NLID. On the 
test, among all languages CHI and JPN were found to perform 
better than the rest and the performance of TUR was low for 
all feature set. Our future research work will be directed 
towards finding prosodic and segmental cues motivated from 
the listener‟s perspective. 
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