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Abstract
Acoustical analysis of speech is considered a favorable and
promising approach to objective assessment of voice disorders.
Previous research emphasized on the extraction and classifica-
tion of voice quality features from sustained vowel sounds. In
this paper, an investigation on voice assessment using continu-
ous speech utterances of Cantonese is presented. A DNN-HMM
based speech recognition system is trained with speech data of
unimpaired voice. The recognition accuracy for pathological
utterances is found to decrease significantly with the disorder
severity increasing. Average acoustic posterior probabilities are
computed for individual phones from the speech recognition
output lattices and the DNN soft-max layer. The phone pos-
teriors obtained for continuous speech from the mild, moderate
and severe categories are highly distinctive and thus useful to
the determination of voice disorder severity. A subset of Can-
tonese phonemes are identified to be suitable and reliable for
voice assessment with continuous speech.
Index Terms: voice disorder, acoustical assessment, posterior
probabilities, automatic speech recognition

1. Introduction
Use of voice is a major part of our daily life. It is not only
for speech communication but also for singing, identifying a
person, expressing an emotion and many other purposes. Voice
problems have become very common nowadays. One of the ma-
jor causes is the misuse of voice, which may be related to occu-
pation and personal life style. Voice disorders are very common
among patients with Parkinson’s disease [1], and may also be
caused by trauma or injury to the head and neck region [2].

Voice disorder is defined as “abnormality of pitch, volume,
resonance and/or quality, and/or a voice that is inappropriate for
the age, gender or culture of the speaker” [3]. Abnormal voices
are described as being hoarse, breathy, weak, and tremorous.
Currently clinical assessment of voice is carried out typically
by perceptual evaluation of elicited speech samples. It aims at
determining the type or severity of impairment and/or identify-
ing specific aspects of the pathology. The accuracy and reliabil-
ity of perception-based assessment depend significantly on the
clinician’s subjective judgement and professional experience.

Acoustical analysis of speech signals is considered a favor-
able and promising approach to objective assessment of voice
disorders. Early studies were focused mainly on extracting fea-
ture parameters that directly quantify abnormal temporal pertur-
bations and waveform irregularities [4][5]. Statistical modeling
and pattern recognition techniques have been successfully ap-
plied to automatic classification and detection of voice pathol-
ogy [6][7]. In most cases, the speech materials were limited
to sustained vowel sounds. Being produced in a controlled

manner, sustained vowels provide an invariant representation
of steady-state phonation. Acoustic parameters extracted from
sustained vowels are invulnerable to linguistic variation and
other phonation-irrelevant factors, making the decision process
simple and straightforward.

Many voice problems are not revealable in sustained vow-
els. It was shown that segmental and suprasegmental linguis-
tic factors of connected speech, especially at consonant-vowel
transitions, had strong influence on voice quality [8]. It was
also found that perceptual assessment using connected and con-
versational speech was more reliable than sustained vowels [9].
For practical applications, the use of natural speech is prefer-
able for its ecological validity and generalisability [7]. On the
other hand, voice disorder is often investigated as a subproblem
of multifaceted speech impairment, e.g., in Parkinson’s disease,
for which the assessment relies on a variety of speech materials
[10]. When continuous speech utterances are used for voice as-
sessment, more sophisticated methods of pattern clustering and
modeling are needed to cope with the large variation of acous-
tic parameters. Specifically, the techniques of automatic speech
recognition (ASR) can be used to pre-process input speech and
facilitate feature extraction from targeted sound units. In [11],
automatic rating of Parkinson’s disease severity was performed
using voice data from diverse speaking tasks. An ASR system
was used to generate phone-level transcriptions for predicting
the task type of each input utterance. In [7], the ASR forced
alignment method was applied to obtain phoneme boundaries
for continuous utterances of pathological speech. Voice quality
parameters, including jitter, shimmer and harmonic-to-noise ra-
tio, were computed from the vowel segments in each utterance.

This paper describes an investigation on acoustical assess-
ment of voice disorder in Cantonese-speaking patients. In a
preliminary study [12], it was noted that a Cantonese ASR sys-
tem trained with normal speech exhibited significantly degraded
performance for dysphonia speech. The recognition accuracy
showed a strong relation with the severity level of voice dis-
order. This motivated us to carry out the following analysis
on ASR posterior probabilities for dysphonia utterances. The
hypothesis is that ASR posteriors are a good measure of the
acoustic mismatch caused by voice quality change and thus can
be exploited for classification and assessment of voice disorder.
Another goal of this study is to identify the phonemic units that
are most suitable for acoustical voice assessment.

2. Speech Database of Dysphonia Voice
The MEEI (also known as MEEI-KayPENTAX) database is
by far the most commonly used database of pathological
voice [13][14]. It contains the speech from 53 normal and
657 impaired subjects, each producing a sustained vowel and
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a continuous sentence of the same content in America En-
glish. NKI CCRT is a Dutch database of continuous sentences
recorded from 55 head and neck cancer patients under chemo-
radiotherapy treatment [2]. This database was used in the IN-
TERSPEECH 2012 Speaker Trait Sub-Challenge for intelligi-
bility assessment of pathological speech [7]. Other databases of
pathological voice include Saarbruecken Voice Database (SVD)
in German [15] and Arabic voice pathology database (AVPD)
[16]. For other languages including Chinese, voice databases of
similar scale are rarely seen.

CanPEV is a Cantonese voice database developed by the
Division of Speech Therapy of the Chinese University of Hong
Kong (CUHK). It was designed for professional training of
speech therapists on voice assessment. The entire database con-
tains speech recordings from 232 subjects with normal or patho-
logical voices. All subjects are native speakers of Cantonese.
The speech data from each subject are divided into the follow-
ing three parts:

Sustained vowels: 3 repetitions of sustained vowels /aa/, /i/
and /u/. Each repetition is about 3 to 5 second long;

Passage reading: Read-style speech of a passage that contains
a brief introduction about Hong Kong. The passage con-
sists of 146 Chinese characters and the speech is about
40 second long;

Spontaneous speech: instantaneous spoken responses to the
questions “What have you done today ?” and “How do
you comment on your own voice ?”

Perceptual rating was performed by 41 experienced listen-
ers and 7 experts on voice assessment. They were asked to lis-
ten to all speech materials from each subject and to rate the
voice on overall severity and a number of pre-defined vocal pa-
rameters, e.g., roughness, breathiness, strain. The ratings were
given on a 10-point scale. In this study, we consider only the
rating of overall severity, which is given by the average score
over the 48 raters. Based on the numerical ratings, the sub-
jects were divided into 4 categories: normal, mild, moderate
and severe. In the present study, only the passage-reading utter-
ances are used.

3. Cantonese ASR System
Cantonese is a major Chinese dialect spoken by tens of mil-
lions of people in the provinces of Guangdong and Guangxi, the
neighboring regions of Hong Kong and Macau, and many over-
seas Chinese communities. In Cantonese, each Chinese charac-
ter is pronounced as a monosyllable carrying a specific lexical
tone. The syllable can be divided into two parts: the Initial
(onset), and the Final (rime). The Initial is typically a conso-
nant, while the Final contains a vowel nucleus followed by an
optional consonant coda. There are 20 Initials and 53 Finals
in Cantonese, which lead to over 600 legitimate base syllables.
Each base syllable can be associated with different tones. If the
tone is changed, the syllable generally refers to another charac-
ter that has a different meaning [17].

A Cantonese ASR system is developed to facilitate acous-
tical assessment of pathological voice. Initials and Finals
are used as the basic units for acoustic modeling [17]. The
acoustic models are trained with 15, 605 utterances from the
CUSENT database and 383 passage-reading utterances (30 nor-
mal subjects) from CanPEV. CUSENT is a large-scale contin-
uous speech database of Cantonese developed by the Chinese
University of Hong Kong [18]. The speech content consists of
5, 100 distinct sentences selected from newspaper articles.

The training of acoustic models is carried out using the
Kaldi speech recognition toolkit [19]. It starts with the GMM-
HMM approach. A total of 297 HMMs are trained to represent
position-dependent Initials, Finals and silence. Each HMM has
3 emission states. The acoustic feature vector is computed with
a context window of 7 frames, each being represented by 13
MFCC features. Linear discriminant analysis (LDA) is applied
to project the contextual feature vector into 40 dimensions, fol-
lowed by the maximum likelihood linear transform (MLLT).
Speaker adaptive training (SAT) is performed on both training
and test utterances by using the feature-space maximum likeli-
hood linear regression (fMLLR) transform. With decision-tree
state tying, 2, 261 probability density functions (pdf) are ob-
tained and they are represented by 24, 024 Gaussians.

Subsequently a DNN-HMM based system is trained based
on the GMM-HMM system. The acoustic feature vector is com-
posed of 40-dimensional fMLLR features with a context win-
dow of 11 frames. The same HMM topology as in the GMM-
HMM system is adopted, except that a deep neural network
(DNN) is used to generate the state-level posterior probabili-
ties. The DNN contains 6 hidden layers and each layer has
1, 024 neurons. The number of output neurons is 2, 261, i.e.,
equal to the number of pdfs. The restricted Boltzmann machine
(RBM) is used to initialize the neural network parameters and
subsequent training is done by the back-propagation algorithm
via stochastic gradient descent.

Performance of the baseline ASR systems are evaluated
with 799 test utterances from CUSENT. The pronunciation
lexicon covers 630 tone-independent syllables. The language
model is a syllable bi-gram trained using the orthographic tran-
scriptions of CUSENT utterances. The syllable error rates
(SER) attained by the GMM-HMM and DNN-HMM system are
10.51% and 7.82% respectively.

4. Analysis of Phone Posteriors
In this section, we first evaluate the performance of the DNN-
HMM based acoustic models on pathological utterances in Can-
PEV. From each of the mild, moderate and severe categories,
10 speakers are randomly selected to contribute to the test data.
The ASR performance is measured in terms of syllable error
rate (SER) and phone error rate (PER), where the phone is ei-
ther an Initial or a Final. Subsequently we analyze the frame-
level posteriors produced by the DNN-HMM acoustic models
and compare the distributions of different severity categories.

4.1. ASR Accuracy on Dysphonia Speech

Since our main focus is on the acoustic mistmatch caused by
voice disorder, the effect of language model is minimized by
using a uniform syllable uni-gram, i.e., the 630 syllables are
assumed to be equally probable. Table 1 shows the SER and
PER for the three severity categories.

Table 1: Recognition performance of DNN-HMM on patholog-
ical utterances

Mild Moderate Severe
SER 6.51% 16.10% 39.35%
PER 3.08% 9.28% 24.03%

The speech recognition accuracy shows a clear trend of de-
clining from the mild category to moderate and severe. This
indicates an increasing degree of mismatch between the acous-
tic models and the pathological voices.
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4.2. Phone posteriors computed from ASR output lattice

Figure 1 gives an example that explains how to obtain frame-
level phone posteriors from the ASR system. It shows a speech
segment that is decoded as two successive phones /h/ and /oeng/
1. In addition to the phone sequence, an output lattice can
be obtained by using the ‘lattice-to-post” function in
Kaldi. Each pair of nodes correspond to the beginning and end-
ing points of a frame. An arc connecting the nodes is associated
with a hypothesized phone and its posterior probability. If there
are multiple arcs for a frame, the posteriors would sum to 1.

h:1.0	

h:0.67�

oeng:0.33	 h:0.03�

oeng:0.97	

oeng:1.0	

h� oeng�
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frames�
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…�

…�
oeng:1.0	

…�

…�

h:1.0	

Figure 1: Frame-level phone posteriors in ASR output lattice

For a specific phone (Initial or Final), the average phone
posterior is computed by the following procedures:

1. obtain ASR output lattices for all test utterances con-
cerned;

2. identify the arcs that correspond to the target phone;

3. compute the average of the frame-level posteriors of the
arcs.

For example, in all test utterances from the mild category,
there are a total of 279 arcs that correspond to the Final /aa/.
The average posterior for /aa/ of the mild category is computed
from these arcs.

The content of CanPEV passage-reading speech covers 18
Initials and 35 Finals. The average phone posterior is computed
for each of them. The distributions of these phone posteriors for
the three severity classes are shown as in Figure 2. In the low
posterior range (e.g., below 0.3), the number of phones from the
severe category is much greater than that from mild. Whilst in
the high posterior range (e.g., above 0.5), the number of phones
from severe is the lowest and that from mild is the highest.

Figure 2: Distributions of phone posteriors computed from ASR
output lattice

1In this paper, Cantonese Initials and Finals are represented using
the Jyut Ping system[17]

4.3. Phone posteriors derived from DNN soft-max layer

Phone posteriors can also be estimated from the DNN soft-max
layer as described below. At each time frame, the soft-max layer
outputs a 2, 261-dimension vector of state posterior probabili-
ties. Each of the 2, 261 state pdfs is tied to a specific phone, and
each phone may be associated with multiple pdfs.

For a specific phone, the average phone posterior is com-
puted by the following procedures:

1. perform forced alignment on all test utterances con-
cerned;

2. identify time frames that are aligned to the target phone;

3. for each of these time frames, obtain the soft-max out-
put vector and sum the vector elements tied to the target
phone;

4. take average of the frame-level posteriors.

Similar to Section 4.2, the average phone posteriors are
computed for all Initials and Finals in the CanPEV passage-
reading utterances. The distributions of these phone posteriors
for the three categories are shown as in Figure 3. It is seen that
different severity categories are well separated by the phone
posteriors. For severe, there are 43 phones (out of 53) hav-
ing posteriors below 0.4. Whereas for mild and moderate, the
number of low-posterior phones are 2 and 13, respectively.

Figure 3: Distributions of phone posteriors computed from
DNN soft-max layer

4.4. Phone matching rate

As described above, the DNN soft-max layer generates 2, 261
state posteriors, each being tied to one of the modeled Initials
and Finals. A frame-level phone label can be obtained by iden-
tifying the state with the highest posterior. If the phone label
matches with that given by forced alignment, this frame is said
to be a matched frame. For a specific phone, the phone match-
ing rate (PMR) is computed as follows,

PMR =
No. of matched frames

Total no. of frames aligned to the phone
. (1)

For example, the test utterances from one of the subjects contain
53 frames assigned to /aai/ in the forced alignment result. From
the DNN output, 49 frames have matched phone label. The
value of PMR for this subject is equal to 0.92. In the subsequent
analysis, the PMR is computed for the test utterances from all
subjects in each category.
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Similar to Section 4.2 and 4.3, the distributions of PMR
for different severity categories are plotted as in Figure 4. The
number of phones with PMR of 0.6 or below are 3, 7 and 41 for
mild, moderate and severe respectively.

Figure 4: Distributions of phone matching rates for the three
severity categories

5. Discussion
In the previous section, two different ways of deriving phone
posteriors from the ASR system have been investigated. The
analysis results on CanPEV continuous utterances clearly show
that the phone posteriors have strong correlation with the cate-
gorical severity labels obtained by perceptual evaluation. The
distributions of phone posteriors computed from the severe and
the mild categories are very distinctive. The posterior values
obtained from the moderate category are distributed between
severe and mild.

Comparing Figure 3 and Figure 2, the phone posteriors
derived from DNN soft-max layer are more discriminative in
severity classification than those from ASR lattice. From Fig-
ure 4, the PMR is also expected to be more discriminate than
lattice based posteriors. It must be noted that the computation
of soft-max layer posteriors and PMR involves the use of addi-
tional information, i.e., the content of input speech for forced
alignment. Such information may be unavailable or only par-
tially available in real-world applications.

The plots in Figures 2, 3 and 4 do not give detailed infor-
mation about individual phones. It is expected that some of the
phones are more useful than the others in detecting and classi-
fying voice disorder. There are 5 phones that have high PMR
values in both mild and severe. All of them are Initials. On the
other hand, there are 10 Finals that have small values of PMR
in both mild and severe. This implies that Finals are subject
to greater variation when voice disorder is present. Each Final
contains a vowel nucleus, which could be /aa/, /e/, /i/, /o/, /u/,
/yu/ or /oe/. We group the Finals that has the same vowel nu-
cleus, and compute the PMR for the respective broad class of
Finals. As shown in Figure 5, the PMR values of mild and se-
vere are highly contrastive, while the moderate category takes
values in-between.

Let Pmild and Psevere denote the soft-max posteriors of
a specific phone in the mild and the severe categories respec-
tively. The ratio of Pmild to Psevere reflects how effective this
phone is in distinguishing severe disorder from mild. For each
of the 18 Initials and 53 Finals, the posterior ratio is computed.
In a similar manner, the PMR ratio between mild and severe is

Figure 5: Phone matching rates of broad classes of Finals

obtained. By examining the posterior ratios and PMR ratios of
all Initials and Finals, the following observations can be made:

1. The posterior ratio and the PMR ratio for the same phone
are highly correlated;

2. Phones that have large posterior ratios and PMR ratios
are mostly Finals. The 10 most discriminative Finals
are: /aa/, /ak/, /ang/, /un/, /aak/, /aam/, /ui/, /u/, /e/ and
/aai/;

3. Some of the voiced Initials, namely, /ng/, /n/ and /l/, have
large posterior ratios that are comparable to the most dis-
criminative Finals;

4. The unvoiced Initials, namely /p/, /z/, /f/, /c/ and /s/, are
least discriminative in detecting voice disorder. They
have posterior ratios and PMR ratios close to 1.

6. Conclusions
Using continuous speech for objective assessment of voice
disorder is practically feasible and clinically appealing. The
present study shows that phone posteriors produced by a DNN-
HMM ASR system are effective in quantifying and predicting
the severity of voice disorder. Although the research has been
based on Cantonese speech, we believe that the methodology
and key findings are generalizable to other languages. Toward
the design of an automatic assessment system, we propose to
use phone-specific posteriors as input features for the detection
and classification of voice disorders. For continuous speech ut-
terances, the ASR system can be used to generate phone align-
ments and dysphonia features can be extracted from a specific
set of discriminative phones.
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