
Learning N-gram Language Models from Uncertain Data

Vitaly Kuznetsov1,2, Hank Liao2, Mehryar Mohri1,2, Michael Riley2, Brian Roark2

1Courant Institute, New York University
2Google, Inc.

{vitalyk,hankliao,mohri,riley,roark}@google.com

Abstract
We present a new algorithm for efficiently training n-gram lan-
guage models on uncertain data, and illustrate its use for semi-
supervised language model adaptation. We compute the proba-
bility that an n-gram occurs k times in the sample of uncertain
data, and use the resulting histograms to derive a generalized
Katz back-off model. We compare three approaches to semi-
supervised adaptation of language models for speech recogni-
tion of selected YouTube video categories: (1) using just the
one-best output from the baseline speech recognizer or (2) us-
ing samples from lattices with standard algorithms versus (3)
using full lattices with our new algorithm. Unlike the other
methods, our new algorithm provides models that yield solid
improvements over the baseline on the full test set, and, further,
achieves these gains without hurting performance on any of the
set of video categories. We show that categories with the most
data yielded the largest gains. The algorithm has been released
as part of the OpenGrm n-gram library [1].

1. Introduction
Semi-supervised language model adaptation is a common ap-
proach adopted in automatic speech recognition (ASR) [2, 3, 4,
5, 6]. It consists of leveraging the output of a speech recognition
system to adapt an existing language model trained on a source
domain to a target domain for which no human transcription is
available. For example, initial language models for voice search
applications can be trained largely on typed queries, then later
adapted to better fit the type of queries submitted by voice us-
ing the ASR output for large quantities of spoken queries [7].
Another related scenario is that of off-line recognition of large
collections of audio or video, such as lectures [8, 5] or general
video collections such as those on YouTube [9]. In these cases,
some degree of self-adaptation or transductive learning can be
carried out on the recordings by folding the output of ASR back
into language model training and re-recognizing. Most often,
one-best transcripts – possibly with some confidence threshold-
ing – are folded back in for adaptation [6, 5, 10]. In this paper,
we investigate methods for adaptation of language models us-
ing uncertain data, in particular the full lattice output of an ASR
system.1 This is a special instance of the general problem of
learning from uncertain data [11].

Adaptation of language models using lattice output was ex-
plored in [6], where consistent word-error rate (WER) reduc-
tions versus just adapting on one-best transcripts were demon-
strated on a voicemail transcription task. Expected frequen-
cies can be efficiently computed from conditionally normalized
word lattices, using the algorithm presented in [12], and these
can serve as generalized counts for the purpose of estimating
maximum likelihood n-gram language models. However, rather

1Note that, for this paper, we are exclusively using speech data for
model adaptation and no side information or meta-data.

than use expected n-gram frequencies, [6] instead employed a
brute-force sampling approach, in order to avoid tricky issues
in model smoothing with fractional counts. In this paper, we
also demonstrate consistent improvements from lattices over
using just one-best transcripts to adapt, but, here, we present
new algorithms for estimating the models directly from frac-
tional counts derived from expected frequencies, thereby avoid-
ing costly sampling. The algorithms has been released as part
of the OpenGrm NGram Library2 [1].

In what follows, we first review Katz back-off language
modeling [13], which is the language modeling choice for this
application, due to its good performance both with very large
vocabularies and (in contrast to Kneser-Ney smoothing [14],
which is otherwise very popular) in scenarios with extensive
model pruning [15, 16]. We next present our new algorithm for
estimating a generalized Katz back-off language model directly
from fractional counts. Finally, we evaluate our methods on
recognition of a selection of channel lineups in YouTube. We
find that our lattice-based methods provide solid gains over the
baseline model, without hurting performance in any of the line-
ups. In contrast, one-best adaptation yielded no improvements
overall, since it hurt performance on some of the lineups.

2. Katz Back-off Models
In this section, we review Katz back-off language models [13].
Let V be a finite set of words, that is the vocabulary. We will
denote by w ∈ V an arbitrary word from this vocabulary. We
assume that we are provided with a sample S of m sentences
drawn i.i.d. according to some unknown distribution, where
each sentence is simply a sequence of words from V . The goal
is to use this sample S to estimate the conditional probability
Pr(w|h), where hw, an n-gram sequence, is a concatenation
of an arbitrary sequence of n − 1 words h (the history) and a
single word w. Katz [13] proposed the following model as an
estimator for Pr(w|h):

P̂r(w|h) =

{
dcS(hw)

cS(hw)
cS(h)

if cS(hw) > 0,

βh(S)P̂r(w|h′) otherwise,
(1)

where cS(hw) denotes the number of occurrences of the se-
quence hw in the training corpus S and where h′ is the longest
proper suffix of h, which we will denote by h′ <suf h, thus
h′ = (w2, . . . , wn) if h = (w1, . . . , wn). βh(S) is a parame-
ter obtained by enforcing normalization:∑

w∈V

P̂r(w|h) = 1.

To complete the definiton of the model, it remains to specify
the discount factors dk for each order k ∈ N. Let Sk = {w ∈

2http://ngram.opengrm.org/

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-10932323

V m : cS(w) = k} and nk = |Sk|. When k ≤ K and m > 1,
dk is defined as follows:

dk =
(k + 1)nk+1

knk
. (2)

When k > K (typically K = 5) or m = 1 (unigrams), there is
no discounting: dk = 1; i.e. the maximum likelihood estimate
is used. The derivation of the discount factors dk makes use of
the Good-Turing estimate as described in Section 3.5.

3. Fractional Counts and Generalized Katz
Back-off Models

In this section, we present fractional count language models
for the scenario of learning with uncertain data described in
Section 1. We assume that instead of a sample S that is just
a collection of sentences, we are given a sequence of lattices
L1, . . . ,Lm drawn from some unknown distribution D. Each
lattice Li, i = 1, . . . ,m, is a probability distribution over a fi-
nite set of sentences, which may be the set of hypotheses and
associated posterior probabilities output by a speech recognizer
for a given spoken utterance. Each lattice can be compactly
represented as an acyclic weighted finite automaton.

As before, the goal is to use this sample to build a language
model. An important requirement is that we should be able to
compute the desired solution in an efficient manner. The solu-
tion that we propose is based on simple histogram statistics that
can be computed efficiently from each lattice Li.

We first briefly review some alternative approaches to lan-
guage modeling using uncertain data and then present our frac-
tional count language models.

3.1. One-Best Language Models

A simple approach to dealing with uncertain data consists
of extracting the most likely path from each of the lattices
L1, . . . ,Lm to obtain a sample x1, . . . , xm. However, this ap-
proach may ignore other relevant information contained in the
full lattices L1, . . . ,Lm.

3.2. Monte Carlo Language Models

[6] showed that using information beyond the one-best path can
help improve performance. In particular, [6] used Monte Carlo
sampling to accomplish this: samples S1, . . . , SM are drawn
from the lattice distribution L which is a concatenation of lat-
tices L1, . . . ,Lm and for each sample a new model p̂Si is con-
structed. The final model is an interpolation of these models.

3.3. Fractional Count Language Models

Fractional count LMs can be viewed as an ensemble of LMs
that estimates the asymptotic limit of the sampling procedure
described in Section 3.2 directly, without sampling. More pre-
cisely, we define the estimate of the probability of a sequence
of words w to be

P̂r[w] = E
S∼L

[p̂S(w)] =
∑
S

Pr
S∼L

[S]p̂S(w), (3)

where the expectation is taken with respect to a random sam-
ple S drawn according to the lattice distribution L which is a
concatenation of lattices L1, . . . ,Lm and where p̂S denotes the
LM derived by training on sample S.

If we ignore computational considerations, the model de-
fined in (3) can be constructed as an interpolation3 of individual

3This is the Bayesian rather than the linear interpolation of these
models [2, 7].

models p̂S with weights Pr
S∼L

[S]. In practice, it is not feasi-

ble to enumerate all possible samples S. However, suppose
that there exists a function f such that for each n-gram w,
p̂S(w) = f(cS(w)). In other words, the estimate of the proba-
bility of w assigned by the model only depends on the count of
that n-gram in the sample. Then it follows that

E
S∼L

[p̂S(w)] =

∞∑
k=0

qL(k,w)f(k), (4)

where qL(k,w) =
∑
S Pr
S∼L

[cS(w) = k] is the probability that

n-gram w occurs k times in the sample drawn according to L.
In order to admit Eq. (4), we make some simplifying as-

sumptions on the form of the underlying language models that
determine pS(w) in Eq. (3). In particular, we assume they have
the following variant form of a Katz language model:

P̂rS(w|h) =

{
dcS(hw)

cS(hw)
cS(h)

if cS(hw) > 0,

βh(L)P̂rS(w|h′) otherwise,
(5)

with h′ <suf h and with the discount factors

dk =
(k + 1)nk+1

knk
, (6)

where nk =
∑

w qL(k,w). Note that the normalization con-
stant βh(L) and discount factors dks do not depend on a partic-
ular sample S and instead take into account the full information
in L.4 This dependence on global information in L instead of
a particular sample S is key to verifying Eq. (4). We describe
the choice of βh(L) below. The derivation of the discount fac-
tors dks makes use of a generalized Good-Turing estimate as
described in Section 3.5.

It follows that, for any n-gram hw observed in the lattice
L, the following holds:

E
S∼L

[p̂S(hw)] = qL(0,hw)βh(L) E
S∼L

[p̂S(h
′w)]

+

K∑
k=1

qL(k,hw)
dkk

|S| +
m∑

k=K+1

qL(k,hw)
k

|S|

= q(0,hw)βh(L) E
S∼L

[p̂S(h
′w)] +

λhw,L

|S|

+

K∑
k=1

qL(k,hw)
k

|S|
(
dk − 1

)
,

(7)

where λw,L =
∑m
k=0 qL(k,w)k is the expected count of w

with respect to L. Otherwise, if hw is not observed in L then
E
S∼L

[p̂S(hw)] = βh(L) E
S∼L

[p̂S(h
′w)]. Conditioning on the

history h leads to the following ensemble model:

P̂r(w|h) =
1

λh,L

[
λhw,L +

∑K
k=1 qL(k,w)k

(
dk − 1

)]
+q(0,hw)βh(L)P̂r(w|h′) if hw ∈ L,

βh(L)P̂r(w|h′), otherwise,

(8)

where h′ <suf h, and βh(L) is a normalization constant. Re-
markably, even though we started with back-off models not
guaranteed to represent proper probability distributions due to

4In stupid back-off [17] an even stronger assumption is made that
βh is the same constant for all histories.

2324

the sample-independent back-off and discount factors, our fi-
nal ensemble model does form a probability distribution. Note
also that the only quantities that are required to construct this
model are the λ·,Ls and the histograms {q(k, ·)}Kk=1. In the
next section, we present an efficient algorithm for computing
these statistics.

3.4. Computing the Histograms q(·,w)

For simplicity, assume that our sample consists of two lattices T
and U such that Pr

S∼L
[S] = Pr

T∼T
[T] Pr

U∼U
[U]. We can compute

the overall count probabilities for a sequence of words w from
its components as follows:

qL(k,w)

=
∑
S

Pr
S∼L

[cS(w) = k]

=
∑
T

∑
U

k∑
j=0

Pr
T∼T

[cT (w) = j] Pr
U∼U

[cU (w) = k − j]

=

k∑
j=0

(∑
T

Pr
T∼T

[cT (w)=j]

)(∑
U

Pr
U∼U

[cU (w)=k−j]

)

=

k∑
j=0

qT (j,w)qU (k − j,w). (9)

The expected count of a sequence word w becomes:

λw,L = λw,T + λw,U . (10)

This computation can be straightforwardly extended to the gen-
eral case of m lattices.

Finally, to further speed up the computation, we assume that
an n-gram that is rare in the corpus occurs at most once on each
lattice path. More precisely, we assume the following for each
component distribution T and for each k ≤ K:

qT (k,w) =

{
λw,T if k = 1

1− λw,T if k = 0.
(11)

This assumption avoids computing the qT s directly for individ-
ual lattices and reduces the problem to computing λw for each
Li and then using (9), (10) and (11) to find the global statistics
for L.

3.5. Good-Turing Estimation

In this section, we provide a detailed derivation of the discount
factors used in the certain and uncertain data cases based on
Good-Turing estimation [13, 18, 19, 20, 21].

For the Katz back-off language models described in Sec-
tion 2, the discount factors dk’s are completely specified by the
following system of linear equations∑

c(w)=k

dk
c(w)

m
=Mk, k ≥ 1

∑
c(w)>0

dc(w)
c(w)

m
= 1−M0, (12)

where Mk = Pr(w ∈ Sk) is the probability mass of n-grams
that occur precisely k times in the training corpus S and the
left-hand side is an estimate of that quantity based on the model.
Solving for dk leads to dk = m

nkk
Mk. This solution cannot be

used directly sinceMk is typically unknown. In practice,Mk is
replaced by the Good-Turing estimator [18] denoted by Gk and
defined to be

Gk =
k + 1

m
nk+1, (13)

where nk = |Sk|, which yields the expression for dk in (2). In
the setting of uncertain data, we replace Gk with its expected
value with respect to the lattice distribution L:

Gk = E
S∼L

[Gk] =
k + 1

m
nk+1. (14)

More precisely, replacing Mk with Gk in (12) and taking the
expectation with respect to L on both sides leads to the follow-
ing system:

dknk
k

m
= Gk, k ≥ 1

∞∑
k=1

dknk
k

m
= 1− G0. (15)

Solving this system for dk leads to the expression (6).

4. Experiments
We carried out experiments on videos sampled from Google
Preferred channels [22] using multi-pass automatic speech
recognition. Google Preferred is a program that allows adver-
tisers access to the top 5% most popular channels with the most
passionate audiences on YouTube. Google Preferred channels
are determined algorithmically based on popularity and passion
metrics including watch time, likes, shares, and fanships to sur-
face among the top 5% of channels. Those channels are pack-
aged into lineups that brands can buy to align with engaged au-
diences and scarce content on YouTube. A lineup corresponds
to a category of video. For this test set, we selected a subset of
these videos from Preferred channels: we picked recent videos
(after 1/1/2012) with moderate video length (120-600secs), and
high video view count. For this paper, we have 13 Preferred
lineups, including: Anime & Teen Animation, Parenting &
Children Interest, Science & Education, and Sports, among oth-
ers. We used one lineup, Video Games, as a development set,
to explore meta-parameters and best practices for model adap-
tation.

The baseline acoustic model is comprised of 2 LSTM lay-
ers, where each LSTM layer admits 800 cells, a 512-unit pro-
jection layer for dimensionality reduction [23], and a softmax
layer with 6398 context-dependent triphone states [24] clus-
tered using decision trees [25]. We use a reduced X-SAMPA
phonetic alphabet of 40 phones plus silence. The features are
40-dimensional log mel-spaced filterbank coefficients, without
any temporal context. The acoustic training data set is 764
hours of transcribed video data as described in [9]. The base
language model is a Katz smoothed 5-gram model with 30M
n-grams and a vocabulary of approximately 2M words.

To adapt the language model for a given lineup, we train a
trigram language model on the ASR 1-best or lattice output of
the baseline system, pruned to include a maximum of 30,000
n-grams.5 We then combine this model with the baseline 5-
gram language model using simple linear interpolation with an
experimentally selected mixing parameter.

5We prune to this number of n-grams to somewhat control for dif-
ferent numbers of n-grams being used to adapt the model, depending
on whether one-best transcripts are used or full lattice counts, as well as
in conditions with varying amounts of count thresholding of n-grams.
Given the amount of adaptation data, we never found any benefit from
n-grams of higher order than trigram.

2325

Figure 1: Parameter sweep on the dev set of: (1) count threshold
values for fractional counts from lattices, with mixture weight
fixed at 0.5; and (2) weights for mixing with the baseline model
for both lattice and one-best methods, with fractional count
thresholding fixed at 0.8.

For using the one-best transcripts, we experimented with
three methods with the dev set: thresholding on posterior prob-
ability to include only those transcripts with sufficient con-
fidence; using the posterior probability to weight the counts
derived from the one-best transcripts6; and using all one-best
transcripts for the entire lineup with no weighting. While
confidence-based thresholding or weighting have been used
successfully for tasks such as voice search [10], we found that
neither improved upon simply using all unweighted one-best
transcripts, most likely due to the relatively long utterances in
the collection and the fact that confidence thresholds (or count
weighting) favored the output for shorter utterances. For this
reason, the one-best trials reported used no thresholding or
count weighting to derive the models.

Our two main meta-parameters for the approach are count
thresholding (based on expected frequency) for the lattice-based
approach and the mixing weight α ∈ [0, 1] for the adapta-
tion model7. Figure 1 shows a sweep over count thresholds
for lattice-based counts (with the mixing parameter fixed at
α=0.5); and mixing parameters for both lattice-based and one-
best models, with count thresholding for the lattice-based model
fixed at 0.8. Based on these, the mixture weight for adaptation
was set to α=0.4 for both lattice-based and one-best adaptation
models (i.e., 0.4 weight to the adaptation model, 0.6 weight to
the baseline), and the count thresholding was set to 0.8, i.e., any
n-gram with expected frequency below 0.8 was discarded.

Table 1 presents results on the dev lineup (Video Games)
and the other (test) lineups, at the optimized meta parameters of
0.8 count thresholding and 0.4 mixture weight for adaptation. In
some cases, the one-best trained adaptation models actually hurt
performance relative to the baseline model; but this is never the
case for lattice trained models, which generally provide larger
improvements than one-best trained models, particularly when
more adaptation data is available. Figure 2 plots the reduction
in WER from the baseline system versus the size of the test set
for both one-best and lattice-based adaptation. While the size of
the test set does not explain all of the variance, there is a definite
trend favoring larger test sets.

We also built Monte-Carlo sampled models of the sort de-
scribed in Section 3.2 and used in [6], where k corpora were

6This is essentially our fractional count method, but applied to only
a single path for each utterance.

7The model is mixed using α times the adaptation model probability
plus 1 − α times the baseline model probability.

Word Error Rate (WER)
Tokens Base- Adapted

Google Preferred Lineup ×1000 line 1-best Lattice ∆
Video Games (dev set) 23.8 41.2 40.3 39.5 1.6
Anime & Teen Animation 4.3 29.9 30.3 29.7 0.2
Beauty & Fashion 37.3 29.6 29.1 28.0 1.6
Cars, Trucks & Racing 5.7 21.6 22.1 21.6 0.0
Comedy 9.3 55.3 54.9 54.9 0.4
Entertainment & Pop Culture 27.8 39.3 39.4 38.9 0.4
Food & Recipes 11.4 42.6 43.0 41.7 0.9
News 12.3 27.4 27.3 26.7 0.7
Parenting & Children Interest 11.7 38.0 38.4 37.1 0.9
Science & Education 15.9 22.0 22.4 21.5 0.5
Sports 6.7 47.3 47.9 47.3 0.0
Technology 23.7 23.1 23.1 22.3 0.8
Workouts, Weightlifting & Wellness 13.2 31.0 30.5 29.1 1.8
All test lineups 179.2 28.8 28.8 28.0 0.8

Table 1: Performance on dev set (row 1) and test channel line-
ups with count thresholding at 0.8 and model mixing at 0.4.

Figure 2: WER reduction vs. number of tokens in the test set,
for both one-best and lattice-based adaptation for each of the
lineups examined.

sampled for each lineup, and an adaptation language model was
built by uniformly merging all k models, before mixing with
the baseline language model. On the dev set, sampling and
merging 100 models yielded performance only marginally bet-
ter than just using one-best, and sampling and merging 1000
models just 0.1 better than that. This is still over a half percent
absolute worse than our lattice-based fractional count methods.
This may also be the result of having relatively long utterances,
so that many more samples would be required to be competitive
with our approach. Of course, even if the accuracies of such
sampling based methods were commensurate, our lattice-based
approach provides the more efficient and scalable solution.

5. Conclusion
We presented a new algorithm for learning generalized Katz
back-off models with fractional counts derived from the uncer-
tain output of ASR systems. Semi-supervised adaptation us-
ing full lattices with our generalized Katz back-off algorithm
yielded a 0.8 absolute WER reduction in aggregate vs. the base-
line, and did not hurt performance in any of the individual line-
ups. In contrast, adapting on one-best output did hurt perfor-
mance in many lineups, resulting in no overall WER reduction.

6. Acknowledgments
The work of M. Mohri and V. Kuznetsov was partly funded by
NSF IIS-1117591 and CCF-1535987.

2326

7. References
[1] B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen,

and T. Tai, “The OpenGrm open-source finite-state
grammar software libraries,” in Proceedings of the ACL
2012 System Demonstrations, 2012, pp. 61–66. [Online].
Available: http://ngram.opengrm.org/

[2] A. Stolcke, “Error modeling and unsupervised language
modeling,” in Proceedings of the 2001 NIST Large Vo-
cabulary Conversational Speech Recognition Workshop,
Linthicum, Maryland, May 2001.

[3] R. Gretter and G. Riccardi, “On-line learning of language
models with word error probability distributions,” in Pro-
ceedings of ICASSP, 2001, pp. 557–560.

[4] M. Bacchiani and B. Roark, “Unsupervised language
model adaptation,” in Proceedings of ICASSP, 2003, pp.
224–227.

[5] A. Park, T. J. Hazen, and J. R. Glass, “Automatic process-
ing of audio lectures for information retrieval: Vocabu-
lary selection and language modeling.” in Proceedings of
ICASSP, 2005, pp. 497–500.

[6] M. Bacchiani, M. Riley, B. Roark, and R. Sproat, “MAP
adaptation of stochastic grammars,” Computer Speech &
Language, vol. 20, no. 1, pp. 41–68, 2006.

[7] C. Allauzen and M. Riley, “Bayesian language model in-
terpolation for mobile speech input,” in Proceeding of In-
terspeech, 2011, pp. 1429–1432.

[8] E. Leeuwis, M. Federico, and M. Cettolo, “Language
modeling and transcription of the TED corpus lectures,”
in Proceedings of ICASSP, vol. I, 2003, pp. 232–235.

[9] H. Liao, E. McDermott, and A. Senior, “Large scale deep
neural network acoustic modeling with semi-supervised
training data for YouTube video transcription,” in Pro-
ceedings of the IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 2013, pp. 368–
373.

[10] F. Beaufays and B. Strope, “Language model capitaliza-
tion,” in Proceedings of ICASSP, 2013, pp. 6749–6752.

[11] M. Mohri, “Learning from uncertain data,” in Proceedings
of COLT, 2003, pp. 656–670.

[12] C. Allauzen, M. Mohri, and B. Roark, “Generalized algo-
rithms for constructing language models,” in Proceedings
of ACL, 2003, pp. 40–47.

[13] S. M. Katz, “Estimation of probabilities from sparse data
for the language model component of a speech recog-
nizer,” IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 35, no. 3, pp. 400–401, Mar 1987.

[14] R. Kneser and H. Ney, “Improved backing-off for m-gram
language modeling,” in Proceedings of ICASSP, 1995, pp.
181–184.

[15] C. Chelba, T. Brants, W. Neveitt, and P. Xu, “Study
on interaction between entropy pruning and Kneser-Ney
smoothing,” in Proceedings of Interspeech, 2010, p.
24222425.

[16] C. Chelba, J. Schalkwyk, T. Brants, V. Ha, B. Harb,
W. Neveitt, C. Parada, and P. Xu, “Query language mod-
eling for voice search,” in Proceedings of the IEEE Work-
shop on Spoken Language Technology, 2010, pp. 127–
132.

[17] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean,
“Large language models in machine translation,” in Pro-
ceedings of EMNLP-CoNLL, 2007, pp. 858–867.

[18] I. J. Good, “The population frequencies of species and the
estimation of population,” Biometrika, pp. 237–264, 1953.

[19] D. A. McAllester and R. E. Schapire, “On the convergence
rate of Good-Turing estimators,” in Proceedings of COLT,
2000, pp. 1–6.

[20] E. Drukh and Y. Mansour, “Concentration bounds for un-
igrams language model,” in Proceedings of COLT, 2004,
pp. 170–185.

[21] A. Orlitsky and A. T. Suresh, “Competitive distribution
estimation: Why is Good-Turing good,” in Advances in
NIPS, 2015, pp. 2143–2151.

[22] “Google Preferred Lineup Explorer - YouTube,” Mar.
2016. [Online]. Available: http://youtube.com/yt/lineups/

[23] H. Sak, A. Senior, and F. Beaufays, “Long short-term
memory recurrent neural network architectures for large
scale acoustic modeling,” in Proceedings of Interspeech,
2014.

[24] L. Bahl, P. de Souza, P. Gopalkrishnan, D. Nahamoo,
and M. Picheny, “Context dependent modelling of phones
in continuous speech using decision trees,” in Proc.
DARPA Speech and Natural Language Processing Work-
shop, 1991, pp. 264–270.

[25] S. Young, J. Odell, and P. Woodland, “Tree-based state ty-
ing for high accuracy acoustic modelling,” in Proc. ARPA
Workshop on Human Language Technology, 1994, pp.
307–312.

2327

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Michael Riley
	Also by Brian Roark
