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Abstract
Dysarthria is a motor speech disorder resulting from impair-
ment in muscles responsible for speech production, often char-
acterized by slurred or slow speech resulting in low intelligi-
bility. With speech based applications such as voice biometrics
and personal assistants gaining popularity, automatic recogni-
tion of dysarthric speech becomes imperative as a step towards
including people with dysarthria into mainstream. In this pa-
per we examine the applicability of voice parameters that are
traditionally used for pathological voice classification such as
jitter, shimmer, F0 and Noise Harmonic Ratio (NHR) contour
in addition to Mel Frequency Cepstral Coefficients (MFCC)
for dysarthric speech recognition. Additionally, we show that
multi-taper spectral estimation for computing MFCC improves
the unseen dysarthric speech recognition. A Deep neural net-
work (DNN) - hidden Markov model (HMM) recognition sys-
tem fared better than a Gaussian Mixture Model (GMM) -
HMM based system for dysarthric speech recognition. We pro-
pose a method to optimally use incremental dysarthric data to
improve dysarthric speech recognition for an ASR with DNN-
HMM. All evaluations were done on Universal Access Speech
Corpus.
Index Terms: dysarthria, speaker adaptation, fMLLR, jitter,
shimmer, deep neural network

1. Introduction
Dysarthria is a motor speech disorder resulting from impair-
ment in muscles responsible for speech production. Neurologi-
cal injury to the nervous system may result in weakness, paral-
ysis, or a lack of co-ordination of the motor-speech system,
resulting in reduction in intelligibility, audibility, naturalness,
and efficiency of vocal communication. For dysarthric speak-
ers, speech is a more efficient/convenient mode of communica-
tion with electronic devices as compared to keyboard input [1].
Voice or speech as a computer interface for dysarthric speakers,
was implemented as early as 1985 [2]. Authors designed an
assistive device to bypass the keyboard and activate the com-
puter using voice control. Despite the early start, automatic
recognition of dysarthric speech is poorer as compared to that
of normal speech, owing to the inter-speaker and intra-speaker
inconsistencies in the acoustic space as well as the sparseness of
data. As per the literature, the work so far can be broadly clas-
sified into two types of research - (1) improving intelligibility
by modifying or enhancing the dysarthric speech and (2) ASR
based speech recognition by speaker adaptation. In [3], authors
study the effect that certain modifications have on the intelligi-
bility of dysarthric speech and report that by transforming the
dysarthric speech at the short-term spectral levels, an increase
in intelligibility was attained. In the study [4], authors have

achieved increased intelligibility by transforming the vowels of
a dysarthric speaker to more closely match the vowel space of
a normal speaker. Features that provided optimum performance
were vowel duration and F1 - F3 (formant 1 - formant 3) sta-
ble points that were computed using shape-constrained isotonic
regression. In another study [5], the author transforms various
aspects of speech such as the correction of pronunciation er-
rors, adjustment of the tempo and the frequency characteristics
of speech to obtain increased intelligibility. Yet another tech-
nique to increase both the perceptual quality of the speech as
well as intelligibility is transformations to formant trajectories
of dysarthric speech, to closely match that of a normal speaker
[6].

In [7], one of the earlier works in ASR based dysarthric
speech recognition, authors stress on the data insufficiency chal-
lenge and define confusability and consistency measures to pre-
dict recognizer performance. Several works [8, 9] discuss the
merits of selection of ASR type namely - speaker indepen-
dent (SI) , speaker dependent (SD) or speaker adapted (SA) by
analysing the correlation between the severity of dysarthria and
best performing ASR type (one of SA or SD). In [10], authors
have used a method of measuring similarity between dysarthric
speakers and select only the most similar speaker data for train-
ing rather the SI acoustic models, followed by maximum a pos-
teriori (MAP) adaptation. Studies [11] also suggest an improve-
ment in recognition by using more suitable prior model or back-
ground model, for adaptation based on the dysarthric speaker’s
acoustic characteristics. Work pertaining to speaker based lex-
ical or pronunciation model adaptation in addition to acoustic
model adaptation, [12, 13, 14] have shown improvement in the
ASR performance. An understanding of the speech production
process through the articulatory models for speech has proven
beneficial in improved accuracy of the ASR, both conventional
GMM-HMM and DNN-HMM [1, 15, 16]. More recently ap-
plication of neural network topologies [17, 18], feature space
maximum likelihood linear regression (fMLLR) transformation
[16] and a hybrid adaptation using maximum likelihood linear
regression (MLLR) and MAP [19] have been used to improve
dysarthric speech recognition.

We believe that speech based applications such as voice
biometric, personal assistants can immensely benefit dysarthric
speakers if designed well. Given the challenges in collect-
ing dysarthric data, the thrust is now on recognition of unseen
speech utterances, i.e. recognition of dysarthric speech that is
not a part of the training set. In this paper, we propose a method
and examine a set of features to improve speech recognition of
unseen dysarthric speech. We incorporate multi-taper MFCC
(MT-MFCC) which has been proven to be effective in speaker
verification and speech recognition [20, 21] as well as voice
disorder classification [22]. Additionally, we examine the voice
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parameters (VP) such as jitter, shimmer, F0 features and noise-
to-harmonics ratio (NHR), that have traditionally been used for
voice disorder classification [23, 24]. Some of these parame-
ters have been used to automatically assess the severity level of
dysarthria [25]. The main contribution of this paper is a frame-
work for unseen dysarthric speech recognition, using a DNN-
HMM SA-ASR system along with the use of a combination of
speaker specific features. To the best of our knowledge no other
work has examined the usefulness of voice parameters such as
jitter, shimmer F0 features and noise-to-harmonics ratio (NHR)
in the context of dysarthric speech recognition.

The rest of the paper is organized as follows. Section 2
describes the features and their role in dysarthric speech recog-
nition, Section 3 discusses the various experimental setups and
a description of the data used, Section 4 describes the results
and analysis and we conclude in Section 5.

2. Features for dysarthric speech
recognition

2.1. Multi-taper spectral estimation

Conventional spectral estimation of speech uses a Hamming-
window or a single taper. Using a single taper windowing re-
sults in a significant portion of the signal being discarded and
the data points at the extremes being down-weighted, giving
a high variance for the direct spectral estimate [26]. Hence,
a multi-taper method is used so that the statistical information
lost by using just one taper is partially recovered by using multi-
ple windows for the same duration. The multi-taper spectrum is
thus a weighted sum of the several tapered periodograms. Spec-
tral estimation of a signal S using multi-taper method is as fol-
lows,

S(m, k) =
1

M

M−1∑
p=0

λ(p)

N−1∑
j=0

wp(j)s(m, j)e
−i2π k

N
j(1)

where wp(j) is the pth data taper function, M is the number of
tapers and λ(p) is the weight corresponding to the pth taper, N
is the speech frame length and k is the FFT points. In practice,
weights are designed so as to compensate for increased energy
loss at higher order tapers.

2.2. Jitter and Shimmer

Jitter and shimmer are characteristic to the speech of an individ-
ual and have been beneficial in speaker recognition tasks [27].
Jitter represents the perturbations that occur in the fundamen-
tal frequency F0 and can be interpreted as a modulation of the
periodicity of the voice signal. Reduced control of vocal fold
vibration, as is the case in dysarthria manifests as jitter. Patho-
logical voices are generally characterized by a high degree of
jitter and perceived as hoarse. Hence, an estimation of jitter
has been used in classification of pathological speech. Absolute
jitter is computed as per Equation 2.

Jitter(absolute) =
1

N − 1

N−1∑
i=1

|Ti − Ti+1| (2)

where Ti = 1 / F0 and N is the number of F0 periods.

Shimmer pertains to the amplitude variation of the sound
wave and varies with the glottal resistance and mass lesions in
the vocal folds manifesting as presence of noise emission and

breathiness in the voice [24]. Absolute shimmer is computed as
per Equation 3 and is expressed in decibels (dB).

Shimmer(absolute) =
1

N − 1

N−1∑
i=1

∣∣∣∣20 ∗ log(Ai+1

Ai

)∣∣∣∣
(3)

where Ai is the extracted peak-to-peak amplitude and N is the
number of F0 periods.

2.3. F0 features

The role of fundamental frequency F0 in the intelligibility of
speech has been studied for both normal and dysarthric speech
[28]. These studies suggest that a higher variation in F0 con-
tributes significantly to increased intelligibility. However, for
dysarthric speakers, the precision and flexibility of the vocal
folds, articulators and other speech subsystems are lower, lead-
ing to reduced prosodic control, reflecting as a reduction in in-
telligibility. Additionally, studies show that the slower artic-
ulatory rate tends to be associated with low values of mean,
maximum and variations of F0 [29]. F0 measurements such as
mean and variation are also indicative of the vocal loudness of
speech, which has a bearing on speech intelligibility.

2.4. Noise to Harmonic ratio (NHR)

Noise-to-Harmonics ratio (NHR) is indicative of the abnor-
mal vibratory characteristics of the vocal folds, manifesting as
hoarseness in dysarthric speech. NHR is measured in dB, cal-
culated by the ratio of noise energy or the aperiodic part of a
sustained vowel to the energy of the periodic part. NHR can be
used as a measure of voice quality and is defined as below.

NHR(dB) = 10 ∗ log
(
En
Ep

)
(4)

where Ep is the energy of the periodic part and En is the en-
ergy of the noise . NHR has been used as one of discriminative
features to evaluate the degree or severity of dysarthria in [25].

3. Speech recognition methodology
3.1. Data

Data from Universal Access (UA) speech corpus [30] was used
for both training and testing of the two ASR systems discussed
in this section. UA speech corpus comprises data from 13
healthy control (HC) speakers and 15 dysarthric (DYS) speak-
ers with cerebral palsy. The recording material consisted of 455
distinct words with 10 digits, 26 international radio alphabets,
19 computer commands, 100 common words and 300 uncom-
mon words that were distributed into three blocks. Three blocks
of data were collected for each speaker such that in each block
speaker recorded the digits, radio alphabets, computer com-
mands, common words and 100 of the uncommon words. Thus
each speaker recorded 765 isolated words. Data from all chan-
nels was used for the purpose of this work. Speech intelligibil-
ity ratings for each dysarthric speaker, as assessed by five naive
listeners is also included in the corpus. We use this informa-
tion to analyse the performance of our recognition systems at
dysarthria severity level.

The objective of this work is to recognize unseen dysarthric
data and explore the applicability of voice parameters in recog-
nition of dysarthric speech. The training and testing corpus as
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described in Table 1 allows us to compare and contrast the per-
formance of our recognition systems for seen and unseen testing
data, i.e. DYS-computer command words (DYS-CC words).

Purpose Data Number of
Utterances

Training
HC-digits 800
HC-computer command words 1500
DYS - digits 800

Testing

HC-digits 110
HC - computer command words 229
DYS - digits 169
DYS - computer command words 361

Table 1: Training and testing corpus

3.2. ASR systems and experimental setup

3.2.1. Feature extraction and normalization

Multi-taper spectral estimation was done using Discrete Pro-
late Spheroidal sequences (DPSS) or Thomson or Slepian tapers
[31] with 6 orthonormal tapers.

wp(j) =
sin[ωcT (p− j)]

(p− j) , j = 0, 1, . . . , N − 1 (5)

where N denotes the desired window length in samples, ωc
is the desired main-lobe cut-off frequency in radians per sec-
ond, and T is the sampling period in seconds. Twelve dimen-
sional MFCC features were computed using Thomson multi-
taper spectral estimation with a 30ms window and a 10ms
shift rate.

All the voice parameters such as the jitter, shimmer, F0,
and NHR measures were computed using the voice analysis
software, ‘Praat’[32], wherein a cross-correlation (cc) method
was used for acoustic periodicity estimation, using a 30ms
window and a 10ms shift rate. ‘Praat’gives various measure-
ments for each of the above voice parameter. Based on experi-
mental evidence and literature [27], features as shown in Table
2 were chosen for speech recognition.

Feature Praat Measurement
Jitter Jitter(local, relative)

Shimmer Shimmer(local, dB)

Fundamental Frequency F0
Standard Deviation
Range (Maximum - Minimum)

Noise to Harmonic ratio
Standard Deviation
Mean

Table 2: Voice parameters extracted from Praat

We have three sets of features namely, MFCC, multi-taper
MFCC (MT-MFCC) and voice parameters (VP).

3.2.2. Speech recognition

We use Kaldi toolkit [33] for both GMM-HMM based and
DNN-HMM based dysarthric speech recognition. A 3-state
HMM with a monophone or a triphone context model is used.
GMM-HMM system was trained using a maximum likelihood
estimation (MLE) training approach along with 100 senones

and 8 Gaussian mixtures. Cepstral mean normalization (CMN)
was applied on each of the above sets of features. Dimension-
ality reduction was done using Linear Discriminant Analysis
(LDA), wherein LDA builds HMM states using feature vectors
with a reduced feature space. We use a context of 6 frames (3
left and 3 right) to compute LDA. The feature vector size post
LDA is set to 40.

The input layer of DNN has 360 (40 × 9frames) dimen-
sions using a left and right context of 4 frames. The output
layer has a dimension of 96 (number of senones available in the
data). We used 2 hidden layers with 512 nodes in each layer.
Trigram language model was used and performance of each of
the recognition systems is reported in terms of word error rate
(WER).

We explore the use of our feature sets - MFCC, MT-MFCC
and MT-MFCC-VP for speech recognition with speaker adap-
tation(SA).

3.2.3. Speaker Adaptation

Traditionally speaker adaptation techniques such as MLLR,
MAP are applied on SI acoustic models at the time of decod-
ing. We use Maximum Likelihood Linear Transform (MLLT)
for speaker normalization. MLLT derives a unique transforma-
tion for each speaker using the reduced feature space from the
LDA.

An inter-speaker feature space normalization technique
known as feature space maximum likelihood linear regres-
sion (fMLLR) [34] is performed for each speaker, wherein
the acoustically transformed feature vector ô(t) is estimated
using a transformation matrix A and a bias vector b as
ô(t) = Ao(t) + b, where ô(t) is obtained by transforming the
the input feature vector o(t) at frame t.

Speaker adaptive training (SAT) [35] is applied at the time
of training the acoustic models and aims at eliminating the inter-
speaker variation. fMLLR based SAT was applied to create
speaker adapted (SA) acoustic models; further, fMLLR was ap-
plied on the features of the input utterances at the time of decod-
ing. SAT using fMLLR remain common to both GMM-HMM
and DNN-HMM based systems.

3.2.4. Incremental training of DNN

Considering the application of DNN-HMM based speech recog-
nizer for unseen dysarthric speech, it is expected that there will
be incremental data as a dysarthric user uses the system. This
data can be used to improve upon the existing acoustic models
and thereby improve the performance of the recognition engine.
Two mechanisms of training the DNN-HMM were considered -
(1) DNN weights built using original corpus, are updated by re-
training, using the incremental data alone. (2) System is trained
on the entire data (original + incremental).

4. Results and Discussion
Speech recognition using the GMM-HMM system as well as
the DNN-HMM system was carried out using a set of features,
namely MFCC, MT-MFCC and VP, individually as well as in
fusion. Training and testing data set up was designed so as
to understand the speech recognition performance for a set of
words for which no training has been done on dysarthric data
such as dysarthric computer command words (DYS-CC). The
train and test for all other cases such as healthy control (HC)
and DYS-digits are disjoint or mutually exclusive. The word
error rates (WER) for Triphone GMM-HMM and DNN-HMM
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Figure 1: WER for GMM-HMM based and DNN-HMM based recognition using speaker adaptation

systems are as shown in Figure 1.
It can be seen that using MT-MFCC and VP - jitter and

shimmer with speaker adaptation, showed a reduction in WER
for the DNN-HMM system, whereas adding F0 features and
NHR features had an adverse impact. It has been observed that
jitter and shimmer are not discernible perceptually by human
listeners [36], whereas any difference in fundamental frequency
F0 or NHR are perceptually apparent [28]. Using CMN and
SAT improved the speech recognition using MT-MFCC-F0 fea-
tures. However, using F0 features in addition to MT-MFCC did
not improve the overall speech recognition for any of the SA
or SI systems. It was seen that, features that have a clear bear-
ing on speech perception adversely impacted the performance
of the recognizers.

Fusion of MT-MFCC, jitter and shimmer (VPJitShim) fea-
tures shows a relative improvement of 8.4% in GMM-HMM
based system and 10.7% in DNN-HMM based system over the
MFCC features alone.

Table 3 shows the recognition results based on speaker type
for the DNN-HMM using MT-MFCC-VPJitShim feature set.
This indicates a correlation between severity of dysarthria and
the accuracy of the recognition system. Similar trend was seen
for MT-MFCC, MT-MFCC-Jitter and MT-MFCC-Shimmer fea-
ture based recognition systems, wherein the WER increased
with the increase in severity of dysarthria.

Speaker %Accuracy-DNN-HMM %Accuracy-DNN-HMM
type Initial Incremental

Digits CC words Digits CC words
Healthy control 98.93 99.4 94.9 99
DYS Very Low 94.66 91.47 94.7 98.66
DYS Low 92.68 36.84 83.1 95.35
DYS Medium 88.24 31.51 82.34 90.09
DYS High 52.38 7.22 51.56 93.65

Table 3: Dysarthria severity wise accuracy for DNN-HMM sys-
tem with original training data and incremental training data for
MT-MFCC-VPJitShim

Experiments pertaining to incremental training were con-
ducted for SA based DNN-HMM recognizer, using fusion MT-
MFCC and VPJitShim features. The DNN-HMM system was

retrained, using the initial weights from the training data men-
tioned in Table 1 and a 10% additional DYS-CC word data. This
system performed poorly in comparison to the system trained
with original training data. This could be attributed to the up-
dating of the neural network to a specific type of data, namely
dysarthric CC word data. As expected, training the DNN-HMM
system using the entire data (original data + incremental data)
provided a significant improvement, especially in the recogni-
tion of DYS-CC words for dysarthric speakers, as shown in Ta-
ble 3. Recognition of digits deteriorated for both healthy con-
trol and dysarthric data, owing to higher number of digits being
incorrectly recognised as CC words, especially the confusable
pairs like the digit ’nine’ and the CC word ’line’.

5. Conclusions
In this paper, we propose a method and examine a set of features
to improve speech recognition of unseen dysarthric speech.
We incorporate multi-taper MFCC (MT-MFCC) and examine
the applicability of voice parameters (VP) such as jitter, shim-
mer, F0 features and noise-to-harmonics ratio (NHR) in two
types of recognition systems namely - GMM-HMM and DNN-
HMM using speaker adaptation approach. For the MT-MFCC-
VP(JitShim) fused feature set, a relative improvement of 8.4%
in GMM-HMM based system and 10.7% in DNN-HMM based
system was seen over the MFCC features alone. This indicates
that while using jitter and shimmer voice parameters was bene-
ficial in speaker adaptation based speech recognition, using F0
and NHR features added no advantage. This difference in be-
haviour of both the recognition systems could be understood
from the perspective of human listener perception of dysarthric
speech. It has been observed that jitter and shimmer are not
discernible perceptually by human listeners, whereas any dif-
ference in fundamental frequency F0 or NHR are perceptually
apparent. An increment in the training data clearly increased
the recognition accuracy of the DNN-HMM based system us-
ing MT-MFCC-VPJitShim features, for DYS-CC words. Our
future work would involve further improving the accuracy of
the dysarthric speech recognition under the DNN-HMM archi-
tecture, exploring different topologies and network types that
would suit best for dysarthric speech recognition.
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