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Abstract
Automatic detection of vowel landmarks is useful in many ap-
plications such as automatic speech recognition (ASR), audio
search, syllabification of speech and expressive speech process-
ing. In this paper, acoustic features extracted around epochs
are proposed for detection of vowel landmarks in continu-
ous speech. These features are based on zero frequency fil-
tering (ZFF) and single frequency filtering (SFF) analyses of
speech. Excitation source based features are extracted using
ZFF method and vocal tract system based features are extracted
using SFF method. Based on these features, a rule-based algo-
rithm is developed for vowel landmark detection (VLD). Perfor-
mance of the proposed VLD algorithm is studied on three dif-
ferent databases namely, TIMIT (read), NTIMIT (channel de-
graded) and Switchboard corpus (conversational speech). Re-
sults show that the proposed algorithm performs equally well
compared to state-of-the-art techniques on TIMIT and better
on NTIMIT and Switchboard corpora. Proposed algorithm
also displays consistent performance on TIMIT and NTIMIT
datasets for different levels of noise degradations.
Index Terms: Vowel landmarks, epochs, excitation source,
zero frequency filtering, single frequency filtering.

1. Introduction
Vowels are produced with a relatively open vocal tract com-
pared to the adjacent consonants, resulting in higher spectral
amplitude in the first and second formant frequency ranges of
vowels than the corresponding spectral amplitude in adjacent
consonants [1]. This causes a maximum in the first formant
frequency spectral amplitude during the production of vowels,
which serves as an evidence for vowel landmarks [1, 2]. The
problem of vowel landmark detection (VLD) is to detect the
location of the vowel landmarks in the speech signal. Acousti-
cally, vowels (especially, regions around vowel landmarks) have
higher intensity than consonants [1 - 3]. This makes VLD use-
ful in building robust automatic speech recognition (ASR) sys-
tems and voice activity detection systems. Also, tasks such as
syllabification of speech, speech rate estimation and language
identification are based on VLD [8 - 14]. These tasks require
to deal with both, read and conversational speech collected in
different environments. Hence, the motivation for robust VLD.

Approaches for VLD were proposed in different contexts
[2, 6 - 14]. VLD plays a crucial role in developing landmark-
based ASR systems [2, 6, 7]. VLD method based on Mermel-
stein’s convex hull algorithm was proposed in [2], where energy
peaks in the first formant range (0 - 900 Hz) were considered as
vowel landmarks. In [6], vowel landmarks were obtained by
combining peaks detected in the energy contours of different

frequency bands. Local peaks detected in the output of the sup-
port vector machine (SVM) trained with mel frequency cepstral
coefficients (MFCCs) for the task of vowel classification were
considered as vowel landmarks [7].

In literature, vowel landmarks were also considered as syl-
lable nuclei [2, 9 - 13]. Hence, VLD based methods were pro-
posed for syllable detection and estimation of speaking rate [9
- 14]. VLD performed by detecting peaks in energy contour,
periodicity measure and instantaneous speech rhythm was con-
sidered for syllable detection [9 - 10]. Peaks in the linear pre-
diction residual combined with the formant peaks, obtained us-
ing group-delay spectrum, were used to obtain vowel landmarks
[11]. Syllabification of conversational speech was performed by
detecting vowel landmarks using bi-directional long-short-term
memory (BLSTM) neural networks [12]. The BLSTM neural
network was trained with sub-band modulation spectrum values
and perceptual linear prediction (PLP) coefficients. VLD based
on smoothed modified loudness contour was used for speak-
ing rate estimation [13]. Spectral sub-band correlation meth-
ods, extended by including temporal correlation and by using
prominent spectral bands, were considered for VLD to estimate
speaking rate [14].

Vowel landmarks can be characterized by both excitation
source and vocal tract system based features, but most of the
existing methods for VLD are based on spectral features. The
main objective of this study is to develop a robust VLD algo-
rithm using acoustic features which represent both excitation
source and vocal tract system characteristics of vowels. In this
work, all the proposed features are extracted around epoch loca-
tions. Epochs are the instants of significant excitation of the vo-
cal tract system which correspond to the glottal closure instants
of the glottal cycle [15]. Generally, regions around epochs have
high signal-to-noise ratio (SNR) values, and are relatively more
robust to external degradations than other regions of speech [15,
16]. Hence, features extracted around epochs are more reliable
in presence of noise [17].

The paper is organized as follows. Section 2 describes the
different datasets considered for analysis. Methods used for ex-
traction of epochs and the proposed acoustic features are ex-
plained in Section 3. Acoustic features along with the proposed
approach for VLD are described in Section 4. Results are dis-
cussed in Section 5. Final section gives the summary and con-
clusions of this work.

2. Description of databases
Three different databases namely, TIMIT [18], NTIMIT [19]
and ICSI switchboard corpus [20] are considered to test the pro-
posed approach for VLD.

The proposed approach is developed and evaluated by con-
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Figure 1: Illustration of the ZFF method for epoch extraction.
(a) Differenced EGG (dEGG) signal of a vowel segment, (b)
speech waveform of the vowel segment, (c) ZFF signal obtained
from the speech signal with hypothesized epoch locations at
positive zero crossings.

sidering a subset of the standard TIMIT database. To set the
parameters for the proposed algorithm, 100 utterances from
TIMIT training set, spoken by 25 speakers (15 male and 10 fe-
male) are used. 1000 utterances, spoken by 168 speakers (112
male and 56 female) from the TIMIT test set are used to evalu-
ate the proposed VLD algorithm.

To study the performance of the proposed algorithm against
channel degradations, the NTIMIT database is used. 1000 ut-
terances in the NTIMIT test set are considered to evaluate the
VLD algorithm.

The ICSI switchboard (STP) corpus is considered to evalu-
ate the performance of the proposed approach on conversational
speech. This corpus consists of large number of telephone con-
versation recordings and is considered as a fair representative of
spontaneous speech. A total of 500 utterances each of 1 to 10
seconds duration are considered to evaluate the proposed VLD
algorithm.

In order to study the robustness of the proposed approach,
white noise from NOISEX database [21] is added to TIMIT and
NTIMIT datasets at various noise levels.

3. Epoch and acoustic feature extraction
methods

3.1. Zero frequency filtering (ZFF) method

Features representing the glottal source of excitation are ex-
tracted directly from the speech signal using zero frequency fil-
tering (ZFF) method [15]. The ZFF method is used to estimate
the location of epochs by passing the speech signal through a
cascade of two zero frequency resonators (ZFR). The trend in
the output of ZFR is removed by local mean subtraction using
a window length of about 1.5 times the average pitch period
(computed using autocorrelation function). This trend removed
output is called zero frequency filtered (ZFF) signal. The in-
stants of negative to positive zero crossings of the ZFF signal
are called epochs. This method of epoch extraction was shown
to be robust against different types of degradations even at low
SNRs [15]. An illustration of ZFF method on a vowel segment
is shown in Fig. 1. ZFF signal (obtained for the vowel seg-
ment in Fig. 1(b)) along with the epoch locations is shown in
Fig. 1(c). Fig. 1(a) shows the differenced EGG (dEGG) signal
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Figure 2: The envelopes obtained using SFF method at every
10 Hz in the frequency range of 0 Hz - 4000 Hz for a vowel
segment.

which is used as a reference for the epoch locations.

3.2. Single frequency filtering (SFF) method

Features capturing vocal tract system characteristics are ex-
tracted using recently proposed single frequency filtering (SFF)
technique [23]. Using SFF method, the amplitude envelope of
the speech signal can be obtained with high spectral and tem-
poral resolution at each frequency. In this method, the envelope
is obtained at any frequency by frequency shifting the speech
signal and filtering the resulting signal using a single-pole filter.
The root of the single pole filter is located on the unit circle at
the highest frequency, i.e., at fs/2, where fs is the sampling
frequency. Brief description of the steps to extract the envelope
of the signal at any desired frequency fk is as follows [23]:

1. Difference the input speech signal s[n].

x[n] = s[n]− s[n− 1]. (1)

2. Multiply the speech signal x[n] with a complex sinusoid
ejw̄kn, where w̄k = π − wk = π − 2πfk

fs
, to shift the

frequency spectrum X(w) of the signal x[n].
The resulting frequency shifted signal

xk[n] = x[n]ejw̄kn, (2)

is passed through a single-pole filter whose transfer func-
tion is H(z), where

H(z) =
1

1 + rz−1
. (3)

This filter has a pole on the real axis at a distance of r
from the origin. Hence the root at z = −r in the z-plane
is set such that it corresponds to fs/2.

3. The output yk[n] of the filter is given by

yk[n] = −ryk[n− 1] + xk[n]. (4)

4. The envelope of the signal yk[n] is given by

vk[n] =
√
ykr[n]2 + yki[n]2, (5)

where ykr[n] and yki[n] are the real and imaginary parts
of yk[n], respectively.
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Figure 3: Features considered for Vowel landmark detection
(a) Speech waveform for the TIMIT utterance “Is a statutory
merger”. Shaded regions in manual phone labels represent vow-
els. (b) α, (c) β, (d) γ values around epochs. (e) Sv values at
every sample of the speech signal.

The value of the single-pole filter i.e., r is chosen to be 0.99,
but not exactly 1, to ensure stability in the filter output. In this
study, the envelope is computed at every 10 Hz in the range of
0 Hz to fs/2 i.e., 4000 Hz as a function of time. The envelopes
obtained at every 10 Hz for a vowel segment at every sampling
instant are shown in Fig. 2.

3.3. Proposed features for VLD

Excitation source based features extracted from the ZFF signal
for VLD are given below.

ZFF signal energy (α): The α value is computed as the
energy of the ZFF signal within a window of 2 msec around
each epoch (1 msec on each side of epoch). The absence of any
acoustic discontinuity during the production of vowels allows
free vibration of the vocal folds [1]. This results in higher en-
ergy concentration around epochs in vowels, which is reflected
by the higher values of α in vowel regions compared to adjacent
consonants as shown in Fig. 3(b).

Strength of excitation (β): The β values correspond to
the rate of glottal closure and are proportional to the slope of
the ZFF signal around epochs [22]. During the production of
vowels, there is no significant pressure drop in the subglottal
airway resulting in stronger excitation of the vocal tract system
[1]. This is represented by the higher values of β in vowel re-
gions compared to adjacent consonants as shown in Fig. 3(c).

Following features are extracted from the envelopes vk[n]
to detect vowel landmarks.

Dominant resonance strength (γ): γ represents the maxi-
mum amplitude across all the envelopes at a given epoch loca-
tion and is computed as

γ[ti] = max
1≤k≤Nk1

vk[ti], (6)

where Nk1 refers to the number of envelopes in the required
frequency range and ti is the ith epoch location. In this paper,
frequency range of 0 Hz to 900 Hz is considered to compute γ
values as the spectral energy is higher for vowels in this range
[2]. Hence, vowel regions exhibit higher γ values compared to
adjacent consonants as shown in Fig. 3(d). In this study, local

peaks detected in the γ contour are considered as the initially
hypothesized vowel landmarks.

Spectral variance (Sv): Sv is the variance of the envelopes
across different frequencies, which is computed as

Sv[n] =

Nk∑
k=1

(vk[n]− µ[n])2

Nk
, (7)

where µ[n] is the mean of all frequency envelopes at the time
instant n and Nk is the number of frequencies considered (here
Nk = 400, as frequencies at every 10 Hz in the range of 0 Hz
to 4000 Hz are considered). Generally, vowels have larger dy-
namic range in the frequency domain compared to the conso-
nants [24]. This is represented by the high Sv values in the
vowel regions compared to consonants as shown in Fig. 3(e),
where Sv values are obtained at every sampling instant.

4. Algorithm for vowel landmark detection
A rule-based algorithm is developed to detect vowel landmarks
in continuous speech. Features discussed in this section are
employed to develop the algorithm for VLD. All features val-
ues are normalized between 0 and 1 (amplitude normalization).
The thresholds laid on the features are selected using histogram
based analysis performed on 100 speech utterances from TIMIT
training set. Steps in the proposed VLD algorithm are as fol-
lows.

1. Extract epoch locations from the speech signal.

2. Compute γ at every epoch location.

3. The first set of evidences for vowel landmarks are ob-
tained by picking the peaks in the γ contour as shown
in Fig. 4(b). Except few, most peaks represent vowel
landmarks.

4. A threshold of 0.015 is used for the peak values. Only
peaks with γ values above this threshold are retained.

5. Compute α and β at every epoch location.

6. A threshold of 0.02 and 0.05 is used for α and β values,
respectively. Select only epochs with α and β values
above these thresholds as shown in Fig. 4(c) for further
analysis.

7. Among the peaks retained after step 4, consider only
those peaks belonging to epochs obtained in step 6 as
shown in Fig. 3(d).

8. A threshold of 5 X 10−4 is used for Sv values obtained
at every sampling instant. Regions with Sv above the
threshold for more than 10 msec are considered potential
for VLD (see Fig. 4(e)). Only peaks occurring in these
regions are retained as shown in Fig. 4(f).

9. If the amplitude of the valley (minimum value) between
two adjacent peaks is greater than 50 percent of the max-
imum value of any of the two peaks, then the peak with
lower amplitude is eliminated. This ensures that more
than one peak is not picked in a single vowel segment.

10. Based on the assumption that the minimum distance be-
tween two spectral peaks is not less than 20 msec, if any
two peaks are separated by less than 20 msec duration,
then the peak with the lower amplitude is eliminated.

Final set of peaks, considered as vowel landmarks, obtained
by the proposed algorithm are shown in Fig. 4(g). The arrows
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Figure 4: Algorithm for Vowel landmark detection (a) Speech
waveform for the TIMIT utterance “it has multiple implica...”,
(b) vertical lines represent the peak locations in the γ contour,
(c) epoch locations obtained by using thresholds on α and β
values, (d) peaks retained after validating with α and β val-
ues, (e) decision obtained by using threshold on Sv , (f) peaks
retained after validating with Sv values, (g) final set of peak
(vowel landmark) locations are represented by the arrows. The
shaded portions in (a) and (g) correspond to the vowel regions
as obtained from manual boundaries.

correspond to the detected vowel landmark locations and the
shaded portions represent the manual vowel boundaries which
serve as ground truth.

5. Results and discussion
Performance of the proposed VLD algorithm is evaluated on
the datasets described in Section 2. Phonetic transcriptions pro-
vided for the datasets are used as ground truth for vowel phones.
If a detected landmark lies in the vowel region, it is considered
as hit. Performance is evaluated in terms of recall, precision
and F-measure. Recall is defined as the ratio of the number of
hits to the number of vowel segments in the ground truth. Pre-
cision is defined as the ratio of the number of hits to the number
of landmarks detected. F-measure is the harmonic mean of the
recall and precision.

Table 1: Performance evaluation on TIMIT dataset.

Measure BLSTM PSF Proposed
Recall 92.22 92.67 91.71
Precision 95.82 91.06 94.77
F-measure 93.98 91.86 93.21

Table 2: Performance evaluation on NTIMIT dataset.

Measure BLSTM PSF Proposed
Recall 87.34 91.46 90.18
Precision 88.62 79.11 89.70
F-measure 87.97 84.83 89.94

Table 3: Performance evaluation on STP dataset.

Measure BLSTM PSF Proposed
Recall 84.44 85.70 84.88
Precision 83.11 85.47 86.98
F-measure 83.74 85.61 85.92

Tables 1-3 give the performance of the proposed algorithm
on TIMIT, NTIMIT and STP datasets compared against the
state-of-the-art BLSTM [12] and perceptually significant fea-
tures (PSF) [11] based methods. It can be observed from Table
1 that the proposed method performs equally well compared to
BLSTM and PSF on TIMIT database. The speakers considered
for evaluation on TIMIT dataset are different from those used
for empirical analysis. Results given in Tables 2 and 3 show
that the proposed method performs better than the other meth-
ods on channel degraded speech (NTIMIT) and conversational
speech (STP dataset). It is important to note that the parameters
(thresholds) of the proposed algorithm are kept constant for all
the three datasets, whereas in case of BLSTM technique, sepa-
rate models are trained for evaluation on TIMIT, NTIMIT and
STP datasets. This shows that the proposed features capture the
properties of vowel landmarks better.

Table 4 gives the performance of the proposed algorithm
on TIMIT and NTIMIT datasets degraded with additive white
noise. It can be observed from Table 4 that the proposed al-
gorithm (for the same parameters) achieves nearly equal F-
measure scores across different noise levels. This shows that
the proposed features are also robust to additive noise. Analysis
of STP in the presence of additive white noise is not performed
as the dataset already contains different noises at varying noise
levels.

Table 4: Performance of proposed algorithm on TIMIT and
NTIMIT added with white noise.

TIMIT NTIMIT
SNR Recall Precision F-measure Recall Precision F-measure
30 dB 90.94 94.64 92.75 90.06 89.65 89.85
20 dB 91.83 94.27 93.04 90.08 89.48 89.77
10 dB 93.37 90.01 91.66 93.63 83.11 88.06
5 dB 92.84 87.71 90.02 92.15 84.37 88.01
0 dB 89.49 87.70 88.59 86.33 84.91 85.61

6. Summary and conclusions
In this paper, acoustic features based on zero frequency filtered
signal and envelope of the speech signal (obtained using sin-
gle frequency filtering method) are proposed for robust detec-
tion of vowel landmarks in continuous speech. Using these
features extracted around epoch locations, a rule-based algo-
rithm is developed for vowel landmark detection. The perfor-
mance of this algorithm is evaluated on three different datasets,
i.e., TIMIT (read speech), NTIMIT (channel degraded speech)
and Switchboard corpus (conversational speech). Evaluation re-
sults show that the proposed method performs equally well on
read speech, and better on channel degraded and conversational
speech, compared to the state-of-the-art methods. Also, the pro-
posed method shows consistently good performance for differ-
ent levels of noise degradations. This method doesn’t require
any prior training, and there is no need of parameter adjustment
for new data.

Robust features to detect landmarks for other sound cate-
gories need to be defined in order to achieve landmark-based
representation of speech signal, which forms our future work.
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